
HYBRID DEEP LEARNING AND MACHINE LEARNING MODELS FOR
FUNDUS LESION IMAGE CLASSIFICATION

A. Jinda Dong⋆ B. Zhiling Li⋆ C. Zhuoyang Wang†

⋆ School of System Design and Intelligent Manufacturing
Southern University of Science and Technology

Shenzhen, China
† Department of Electronics Engineering

Southern University of Science and Technology
Shenzhen, China

ABSTRACT

This project explores combining deep learning and traditional
machine learning for image classification, focusing on fundus
lesions. We used a pre-trained ResNet18 to extract features,
then applied Linear Regression, MLP, KNN, and SVM for
classification, achieving promising results. Additionally, we
trained ResNet18 and a CNN for feature extraction, followed
by MLP for multi-class classification, which also yielded sat-
isfactory outcomes. Our findings demonstrate that this hybrid
approach enhances image classification accuracy, particularly
for fundus lesions.

Index Terms— deep learning, fundus lesions, image clas-
sification, ResNet18, hybrid models

1. INTRODUCTION

Image classification is a critical task in computer vision, with
numerous applications in medical diagnostics, particularly in
detecting and classifying fundus lesions. Traditional machine
learning techniques have been widely used for this purpose,
yet they often struggle with the high-dimensional nature of
image data. In recent years, deep learning models, such as
Convolutional Neural Networks (CNNs), have shown remark-
able performance in image analysis tasks due to their ability
to learn hierarchical features from raw data automatically.

In our work, We leveraged a pre-trained ResNet18 model
to extract image features, which were then classified us-
ing various traditional machine learning models, including
Linear Regression Classification, Multi-Layer Perceptron
(MLP), K-Nearest Neighbors (KNN), and Support Vector
Machine (SVM). This hybrid approach aims to capitalize on
the strengths of both deep learning and traditional techniques.

Furthermore, we trained the ResNet18 network specif-
ically for the classification of fundus lesions utilizing fun-
dus images. To further substantiate our findings, we also
developed Convolutional Neural Networks (CNNs) to au-

tonomously extract image features, which were subsequently
classified using a Multi-Layer Perceptron (MLP) for multi-
class categorization. Our experimental results demonstrated
robust classification performance on the fundus images, indi-
cating a promising and reliable approach for medical image
analysis.

The following sections of this paper will detail our
methodology, results and analysis of the required tasks.

Our experiments were conducted on a system equipped
with an AMD Ryzen R7 6800H processor and an NVIDIA
RTX 3050 Ti graphics card, running on the Windows 11
Home operating system.

2. FORMULAS

Convolution operations in CNNs:

f(x, y) ∗ g(x, y) =
a∑

i=−a

b∑
j=−b

f(i, j) · g(x− i, y − j) (1)

Max pooling operation:

Px,y = max
i,j∈Region

(Ix+i,y+j) (2)

Cross-entropy loss for multi-class classification:

L = −
M∑
c=1

yo,c log(po,c) (3)

Stochastic Gradient Descent (SGD) update rule:

θ = θ − η · ∇θJ(θ;x
(i), y(i)) (4)

Accuracy calculation:

Accuracy =
Number of Correct Predictions
Total Number of Predictions

(5)

True Positive Rate and False Positive Rate for ROC curve:

TPR =
TP

TP + FN
, FPR =

FP

FP + TN
(6)

1

https://orcid.org/0009-0004-8114-5814
https://orcid.org/0009-0008-3828-9811
https://orcid.org/0000-0000-0000-0000

3. RELATED WORK

3.1. Residual Neural Networks

Residual Neural Networks (ResNets) represent a significant
breakthrough in the training of very deep neural networks.
Introduced by He et al. in their seminal 2015 paper, ResNets
addresses the problem of vanishing gradients—a common is-
sue in traditional deep networks as depth increases—by in-
troducing residual blocks with skip connections. These con-
nections allow gradients to flow directly through the network,
effectively alleviating the problem of gradient disappearance
during backpropagation [1].

The core idea behind a ResNet is to learn residual func-
tions with reference to the layer inputs, as opposed to learn-
ing unreferenced functions. Mathematically, this can be ex-
pressed as follows:

y = F(x, {Wi}) + x (7)

Here, x and y are the input and output of a residual block,
respectively, and F(x, {Wi}) represents the residual mapping
to be learned. For each residual block, the function F rep-
resents the stacked non-linear transformations, and {Wi} de-
notes the set of weights associated with these transformations.
The operation x + F(x, {Wi}) is performed by a shortcut
connection and element-wise addition [2].

Fig. 1. The architecture of a Residual Network (ResNet)
block is shown, where the input x is processed through two
paths. In one, x bypasses two weight layers and is added to
their output before passing through a ReLU activation. This
design supports deep network training by leveraging shortcut
connections for identity mapping.

ResNets have shown remarkable performance on various
challenging tasks such as image classification, object de-
tection, and segmentation, significantly reducing error rates
compared to previous architectures. This model has been ex-
tensively used and adapted in numerous applications, demon-
strating its versatility and efficiency in handling problems
associated with deep learning architectures [1].

3.2. Convolutinoal Neuron Networks

Convolutional Neural Networks (CNNs) are a class of deep
learning models designed specifically for image data process-
ing. Their structure typically includes multiple convolutional

Fig. 2. Structure for the CNN model. This graph illustrates
the original structure of a CNN model in 1980, where the
Us layers represent the convolution layers, and the Uc lay-
ers stands for the pooling layers.[3]

and pooling layers that extract local features from images
through convolution operations and reduce the spatial di-
mensions of feature maps through pooling operations, thus
decreasing computational complexity. Finally, the network
performs classification through a series of fully connected
layers, outputting the probability distribution for each class.
CNNs excel in tasks such as image classification, object
detection, and image segmentation, effectively capturing hi-
erarchical features of images.[3, 4]

4. TASK1: SIMPLE COMBINATION OF DEEP
LEARNING AND TRADITIONAL MACHINE

LEARNING

4.1. Methodology

In this task, we utilized a pre-trained ResNet18 model to ex-
tract 1000 features from the input images. These features
were then used as inputs for classification using Linear Classi-
fication (LE), K-Nearest Neighbors (KNN), and Support Vec-
tor Machine (SVM) models, implemented with the sklearn
library. The models were trained on a dataset of fundus im-
ages categorized into three classes.

4.2. Results

We evaluated the accuracy of each model in classifying the
images and generated ROC curves to assess their perfor-
mance. As shown in Fig. 3 and Table 1, the models demon-
strated high classification accuracy. The area under the ROC
curves approached 1, indicating excellent classification per-
formance.

2

Model LE KNN SVM
Accuracy 100% 100% 100%

Table 1. Classification accuracy of different models

4.3. Result Analysis

Why the results are that good? In fact, the features we use are
extracted by the ResNet18, which had been examined to per-
form well in classification. The boundaries of these features
are so clear that our classifier can easily distinguish them.

Fig. 3. ROC curves of different models (from left to right):
LE, KNN, and SVM. The area under each curve is 1, indicat-
ing perfect classification performance by all three models.

5. TASK2: TRAINING THE RESNET18

5.1. Methodology

In this task, we utilized a pre-trained ResNet18 model to clas-
sify fundus images. Firstly, we defined the image preprocess-
ing transformations, including resizing, tensor conversion,
and normalization. We then loaded the training and testing
datasets the ImageFolderWithPaths class, specifying
the data paths and batch sizes. The learning rate is 0.001
and the momentum is 0.9. The size of the output layer of the
ResNet is so large, so we replace it with a 3-class classifier.

Subsequently, we employed the default weights of the
ResNet18 model and adjusted its output layer to fit our clas-
sification task. We selected the cross-entropy loss function
and stochastic gradient descent (SGD) optimizer for model
training.

We conducted multiple training iterations and observed
that, with our chosen parameters, the model tends to converge
after approximately three epochs, after which the loss func-
tion exhibits fluctuations. Consequently, we set the training
to run for five epochs. During each epoch, the model under-
went forward and backward propagation on the training set
to update the weights. At the conclusion of each epoch, we
evaluated the model’s performance on the testing set by cal-
culating the validation accuracy.

After training, we collected the predictions and labels
from the test set. These results were used to calculate classi-
fication accuracy and plot ROC curves, providing an assess-
ment of the model’s performance.

5.2. Results

The result is pretty good. On the testing set, the accuracy of
the classification is 100%, and the variation of the loss func-
tion and the final ROC curve is shown in Fig. 4.

…

Flat Pool Output

Fig. 4. Results for training and testing the ResNet18 model.
The left side shows the replacement of the last layer of the
ResNet18. We use the fully connected networks to connect
the last pooling layer to the 3-class output layer, rather than
fc 1000 in that graph. On the right side, the upper plot
shows the loss curve of the ResNet18 model during training,
where the loss decreases significantly in the initial epochs and
stabilizes after the third epoch, despite minor fluctuations.
The lower right plot displays the ROC curves for a multi-
class classification task (classifying three different types of
fundus lesions), with each class achieving a perfect area under
the curve (AUC) of 1.00, indicating exceptional classification
performance across all categories.

5.3. Analysis

The primary reason for achieving fast convergence 100%
accuracy is the superiority of the ResNet18 neural network.
ResNet18 incorporates residual connections, effectively ad-
dressing the issues of vanishing and exploding gradients in
deep neural networks, allowing the model to maintain high
training efficiency and classification accuracy even in deeper
network structures. Additionally, ResNet18 has excellent fea-
ture extraction capabilities, enabling it to extract high-quality
features from complex image data, which significantly en-
hances classification performance. Furthermore, our model
was well-trained on a specific dataset, contributing to its
exceptional performance on the test set.

3

Model LE KNN MLP ResNet
Accuracy 96.7% 91.5% 97.6% 100%

Training Time (s) 19.2 0.362 52.5 348

Table 2. Classification accuracy and training time of different
models.

Fig. 5. Results for our models. The first row shows the varia-
tion of loss for logistic regression model (left) and multi-layer
perceptron (right). The second row shows the ROC curve for
the logistic regression model (left), k-nearest neighbors model
(middle), and multi-layer perceptron model (right).

6. BONUS1: AN ATTEMPT: A NOVEL CLASSIFIER

6.1. Methodology

According to the doc from pytorch, we established 3 basic
models based on pytorch. We encapsulated 3 different
models: logistic regression (LE) k nearest neighbors (KNN)
and multi-layer perceptron (MLP) manually to call better the
functions in the models, which can fit our self-defined mod-
els.

We want to use the default features (that is, do not operate
the ResNet18) from the ResNet18 and apply the LE, KNN,
and MLP models on the default features. And the steps are
the same as the 3.1 part.

6.2. Results

The training results are not as good as the ResNet18. We
provide the accuracy and the time cost in Table 2 and the ROC
curves in Fig. 5. Though the classification results are not so
good, the time cost has been cut drastically.

6.3. Analysis

The main reason for the huge gap between our experimen-
tal results and the direct use of ResNet18 is that our ma-
chine learning mode is mainly traditional machine learning.

In the training process, we only trained the traditional ma-
chine learning part, but did not make any changes to the fea-
ture extraction part of ResNet18. This results in some features
not being extracted. The speed increase is also mainly due to
the fact that we only trained the traditional machine learn-
ing part, resulting in the speed increase. We will discuss the
improvement together with the features extraction part in
the following section.

7. BONUS2: EXTRACTING FEATURES WITH
CONVOLUTIONAL NEURON NETWORKS

7.1. Methodology

Based on pytorch, to better our own design of the classifier,
we finished a convolutional neuron network (CNN) manu-
ally, to extract the features better. And after extracting the
feature, we apply the self-defined models (provided in section
6).

Initially, we processed the images. We resize the image,
adjust its brightness and contrast, and convert it to a grayscale,
preserving the final gray gradient phase. Two examples of the
preprocessed image are shown in Fig. 6.

Fig. 6. Two examples of our preprocessing results. We resize
each graph to be 224 × 224 in size (the same as the example
provided by TA), adjust the image contrast to 2.5 times its
original level, and reduce the brightness by 20 units. Then we
convert the input image to grayscale, and apply Gaussian blur
with a kernel size of (1, 1) to reduce noise and improve edge
detection, and then used the Canny edge detection algorithm
with thresholds of 30 and 65 to compute the gradient image.

Our design is pretty much like the classic CNN structures
shown in Fig. 7, which is pretty much like that in [4]. Our
strategy for CNN is as follows:

Convolution Layers
To extract features, we apply Each convolutional layer

employs a kernel size of 3×3, with a stride of 1 and padding
of 1.

Pooling layers Pooling layers is used for decreasing com-
putational complexity while preserving essential feature in-
formation. In our work, each pooling layer employs a kernel

4

https://pytorch.org/docs/stable
https://pytorch.org/docs/stable

Convolution PoolingInput

…

…

Flat Pool Output

…

MLP

Fig. 7. Structure for our self-defined CNN model.

Model CNN ResNet
Accuracy 99.53% 100%

Training Time (s) 155 348

Table 3. Comparing the classification accuracy and training
time between our self-defined CNN model to the ResNet18
model. Due to the simple structure of our model, the training
time of our model is shorter, whose accuracy is slightly lower
than the ResNet18.

size of 3×3, with a stride of 2 and padding of 0. We consider
”max pooling” for downsampling the feature maps.

Fully Connected Layers
After the last downsampling, we flatten the last layer and

connect it to a multi-layer perceptron to do nonlinear multi-
class classification.

And our parameters are set to be:
• Convolutional Channels: [16, 32, 64]
• Hidden Layers for MLP: [128]
• Learning Rate: 0.001
• Momentum: 0.9
• Epochs: 3

7.2. Results

Using the testing data for evaluating our work. The classifica-
tion results are pretty good. It reaches the accuracy of 99.53%
with in 155s (provided in Table 3), which is to say, only one
graph failed to be recognized by the model implemented by
ourselves. The final training loss is 0.002, and the ROC curve
is shown in Fig. 8

7.3. Analysis

By employing image preprocessing, defining a CNN to ex-
tract image features, and using a multi-layer perceptron
(MLP) for classification, we achieved significant improve-
ments in our classification results. Although our model’s
accuracy is slightly lower compared to ResNet18, our train-
ing time (155s) is less than half of that of ResNet18 (348s).

Fig. 8. The ROC curve for examining the classification results
of our fully designed CNNC model.

However, our model is not without its limitations. Firstly,
the simplicity of our convolutional layers renders them inad-
equate for handling the complexity of fundus images. Sec-
ondly, converting images to grayscale may result in informa-
tion loss. Additionally, our preprocessing techniques are rel-
atively basic, and our fully connected layers rely on the sim-
plest form of MLP, which collectively contributes to the lower
classification accuracy compared to the ResNet18 network. It
is noteworthy that the faster training speed of our model can
likely be attributed to its simpler architecture.

8. BONUS3: CLASSIFYING 7 CLASSES

8.1. Methodology

In this extension of our project, we modified the pre-trained
ResNet18 model to adapt from a three-class to a seven-class
classification system. This task was aimed at exploring the
model’s performance on a more complex classification sce-
nario with a newly constructed dataset for seven distinct cat-
egories.

The dataset was meticulously organized, ensuring a bal-
anced distribution of classes to prevent any bias during the
training process. Standard image preprocessing techniques
such as resizing, normalization, and augmentation were em-
ployed to enhance the model’s training efficiency and robust-
ness.

The architecture of the ResNet18 was modified by adjust-
ing the last fully connected layer to output seven classes in-
stead of the original three. This change was crucial to accom-
modate the diverse categories present in the new dataset.

The training process involved several key steps:
i. Loading the balanced seven-class dataset and applying

necessary preprocessing steps.

5

Fig. 9. The architecture of the ResNet18, modified by ad-
justing the last fully connected layer to output seven classes
instead of the original three.

ii. Modifying the neural network’s architecture to include a
fully connected output layer designed for seven classes.

iii. Employing stochastic gradient descent for optimization,
with a learning rate initially set to 0.001 and momentum
of 0.9.

iv. Conducting the training over multiple epochs, monitoring
performance on a validation set to prevent overfitting, and
adjusting training parameters when necessary.
These steps ensured that the model was not only adapted

to the complexity of classifying multiple categories but also
optimized to achieve high accuracy and robustness in its pre-
dictions. The effectiveness of this methodology was later val-
idated through comprehensive performance metrics, includ-
ing ROC curves for each class, demonstrating the model’s en-
hanced capability to discriminate among more nuanced cate-
gories.

8.2. Results

The evaluation of the modified ResNet18 model on the seven-
class classification task was quantitatively assessed through
the use of ROC curves for each class. As illustrated in the ac-
companying figure, the model demonstrated exceptional per-
formance across all classes.

The results indicate that all seven classes achieved an area
under the curve (AUC) of 1.00. This perfection in AUC val-
ues suggests that the model was able to distinguish between
the classes with 100% accuracy, without any overlap or mis-
classification between the different classes. Such outcomes
highlight the model’s robustness and its capability to handle a
more granular level of classification effectively.

Fig. 10. ROC curves for the seven-class classification task
using the modified ResNet18 model. Each curve corresponds
to one of the seven classes, with each curve achieving an area
under the curve (AUC) of 1.00, indicating perfect classifica-
tion ability.

8.3. Analysis

The transition from a three-class to a seven-class classi-
fication system required careful consideration of the net-
work’s architecture and training dynamics. By adapting the
ResNet18 model to output more classes, we observed an in-
crease in the complexity of the feature space that the model
needed to learn. This was effectively managed by optimizing
training parameters and ensuring that the dataset was well-
preprocessed and balanced, which was crucial for achieving
high classification performance.

This experiment underscores the adaptability of convolu-
tional neural networks to varied and complex classification
tasks, further highlighting the efficacy of deep learning in
medical image analysis.

9. CONCLUSION

In this project, we investigated the combination of deep learn-
ing and traditional machine learning techniques for classify-
ing fundus lesions in medical images. By leveraging a pre-
trained ResNet18 model for feature extraction and employing
various traditional classifiers, we achieved promising results
demonstrating this hybrid approach’s effectiveness.

Our experiments showed that the ResNet18 model, both
in its pre-trained and fine-tuned forms, is highly effective at
extracting discriminative features from fundus images, lead-
ing to excellent classification performance. The hybrid ap-
proach of using deep learning for feature extraction and tra-
ditional machine learning for classification capitalizes on the

6

strengths of both paradigms, resulting in a robust and inter-
pretable system.

During our research, we designed a custom CNN for fea-
ture extraction, which provided a good balance between accu-
racy and training efficiency. While the custom CNN did not
surpass the ResNet18 in accuracy, it highlighted the potential
for creating lightweight models tailored for specific tasks.

Furthermore, we extended our classification system to
handle seven classes instead of three, demonstrating that the
modified ResNet18 could achieve perfect classification per-
formance even with increased complexity. This underscores
the scalability and robustness of our methodology for more
nuanced classification tasks in medical image analysis.

Overall, our work shows that combining deep learning
and traditional machine learning techniques can significantly
enhance the accuracy and efficiency of medical image clas-
sification. Future research should focus on exploring more
sophisticated models, larger and more diverse datasets, and
advanced feature extraction techniques to further improve the
performance and generalizability of such hybrid systems.

10. REFERENCES

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,”
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016.

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Identity mappings in deep residual networks,”
European conference on computer vision, pp. 630–645,
2016.

[3] Kunihiko Fukushima, “Neocognitron: A self-organizing
neural network model for a mechanism of pattern recog-
nition unaffected by shift in position,” Biological cyber-
netics, vol. 36, no. 4, pp. 193–202, 1980.

[4] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner, “Gradient-based learning applied to document
recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

7

	 Introduction
	 Formulas
	 Related Work
	 Residual Neural Networks
	 Convolutinoal Neuron Networks

	 Task1: Simple Combination of Deep Learning and Traditional Machine Learning
	 Methodology
	 Results
	 Result Analysis

	 Task2: Training the ResNet18
	 Methodology
	 Results
	 Analysis

	 Bonus1: An Attempt: a Novel Classifier
	 Methodology
	 Results
	 Analysis

	 Bonus2: Extracting Features with Convolutional Neuron Networks
	 Methodology
	 Results
	 Analysis

	 Bonus3: Classifying 7 Classes
	 Methodology
	 Results
	 Analysis

	 Conclusion
	 References

