
Signals and Systems Lab Report

<Project 1> Speech Synthesis and

Perception with Envelope Cue

Author

Lifer (XD

Introduction

Background

The cochlea plays an important role in the process of human speech

reception and recognition. The Characteristic frequency of the basement

membrane decreases from bottom to top. For humans, this resonance frequency

ranges from approximately 20-20000 Hz, which is the normal hearing frequency

range for humans. Received physical signals are converted into acoustic signals

by the cochlea and transmitted to the nerves. The task people attempt to do is to

simulate this process to create the cochlear implant.

Figure 1 Cochlea Structure Display

In the realization process of the cochlear implant, the core part is the step of

using the microprocessor to process the speech signal. There are currently two

types of schemes for the processing of human voice signals. The first is a scheme

based on spectral features for parameter extraction, and the second is a scheme

Signals and Systems Lab Report

based on band-pass filter banks. The following is a specific exploration based on

the filter bank scheme.

According to formal research, the speech waveform can be decomposed, by

Hilbert transform, into the product of the signal envelope and fine-structure

waves. The envelope is most important for speech reception, which contains low-

frequency; while the fine structure is most important for pitch perception and

sound localization, which contains high frequency. From A. Nejat Ince’s book,

most parts of speech information are carried in the envelope, while the fine

structure signals, part with the formant, maintain spectral details, identifying

properties of sounds. The similarity between fine structure and the spectrum

determines the retention of sound characteristics, especially for voiceless

plosives. (1992, pp.55-57) The human voice has a uniquely more continuous

spectral character. Thus, we need to build a Tone-vocoder to reduce the distortion

of the vocal signal during transmission.

Tone-vocoder System

As Figure 1 shows, in this Tone-vocoder system, the original sound signal is

segmented through a series of band-pass filters, and each segment is subjected to

full-wave rectification, and then passed through a low-pass filter, to extract the

envelope of each segment. Multiply these envelopes with a sine wave signal,

which frequencies are at the frequency midpoint of the corresponding segmented

passband. Finally, these loaded signals are synthesized, and then energy is

normalized.

Figure 2 Tone-vocoder System

As for the detailed process, we first choose the suitable frequency range to

divide. According to Steeneken and Houtgast, the center frequencies of the

Signals and Systems Lab Report

human voice range from 125 Hz to 8 kHz (1999, pp.109-123). Thus, choose

frequencies ranging from 200 Hz to 7000 Hz, then use band-pass filters to

segment these signals.

Implementation and analysis

Basic task introduction

For the first two tasks, we use two different methods to segment and compare

their performance:

1) Equal frequency interval division between 200 Hz and 7000 Hz.

2) Equally divide the cochlea length and take the mapping of the

corresponding length to set the frequency.

For the first method, divide the frequency band into N segments according to

the numerical average of the frequency. Use these frequency bands’ upper and

lower limits as parameters of the buffer function to generate the corresponding

bandpass filter, and filter the original signal to generate N-segment sub-signals

For the second method, we know the mapping relations of the cochlea length

and resonance frequency are

In the above process, change different N, which is the segment number, to find

better effects.

Next, abstract the envelope of the sub-signals. First, full-wave rectification is

performed, which is the abs of the signals. Then, pass the signal through a low pass

filter, which is generated by the function “butter”. In this way, the envelope of each

sub-signal is obtained. These envelope signals are multiplied by the sinusoidal

carrier signal at the midpoint frequency of the corresponding frequency band, and

the signals are synthesized, and then energy normalized.

In this process, change the cut-off frequency of the LPF to find better effects.

For the last two tasks, generate an SSN and add it to the original sound signal,

then regard it as the original signal, and repeat the above operations. How to

generate the SSN is mentioned in Lab 5, so it will not be repeated here.

Implementation of basic task

For Task 1, fix the cut-off frequency of the LPF in the process of abstracting the

envelope on 50 Hz, then segment the signal by means of frequency equalization

Signals and Systems Lab Report

using different N. And for Task 2, fix the segment number N as 4 and change the

cut-off frequency.

In this process, the functions we need to implement in the code are filter

design, envelope extraction, generating SSN at a certain SNR, energy

normalization, and file manipulation. In addition, encapsulation and integration

of code functions are also required.

1. Parameter preposition and quick adjustment

Figure 3 Parameter preposition and quick adjustment

2. Tone Vocoder design

Figure 4 Batch Extract Envelopes

Figure 5 Carrier loaded - Easy to change the carrier frequency algorithm

For Task 3, we add SSN to the original signal and repeat the operations of Task

1. So as for Task 4 relevant to Task 2.

In this process, the function we need to implement in the code is adding the

SSN signal at a certain SNR.

Signals and Systems Lab Report

Figure 6 Generate SSN

And to response the setting.

Figure 7 Response the SSN setting

Result analysis of basic task

1. The results of Task 1 are as follows.

Original signal 1 and its spectrum

Signals and Systems Lab Report

Signal 1 and spectrum recovered under different segment number

Signals and Systems Lab Report

Original signal 2 and its spectrum

Signal 2 and spectrum recovered under different segments

Signals and Systems Lab Report

The greater the number of segments, the better the recovery.

2. The results of Task 2 are as follows.

Original signal 1 and its spectrum

Signals and Systems Lab Report

Signal 1 and spectrum recovered under different LPF cut-off frequencies.

Original signal 2 and its spectrum

Signal 2 and spectrum recovered under different LPF cut-off frequencies.

Signals and Systems Lab Report

The higher the LPF cut-off frequency, the better the recovery.

3. The results of Task 3 are as follows.

Original signal 1 with SSN and its spectrum

Signals and Systems Lab Report

Signal 1 with SSN and spectrum recovered under different N.

Original signal 2 with SSN and its spectrum

Signals and Systems Lab Report

Signal 2 with SSN and spectrum recovered under different N.

Signals and Systems Lab Report

Under the same number of segments, the recovery of the signal with SSN is worse

 than that without SSN.

4. The results of Task 4 are as follows.

Original signal 1 with SSN and its spectrum

Signal 1 with SSN and spectrum recovered under different LPF cut-off

frequencies.

Signals and Systems Lab Report

Original signal 2 with SSN and its spectrum

Signal 2 with SSN and spectrum recovered under different LPF cut-off

Signals and Systems Lab Report

frequencies.

Under the same LPF cutoff frequency, the recovery of the signal with SSN is worse

 than that without SSN.

In summary, appropriately increasing N and the cutoff frequency can

improve the recovery effect of the sound signal. The worse signal recovery effect

with SSN is due to the fact that when the SNR is low, too much noise signal covers

up the information of the original signal.

Advanced tasks

1. Analysis of Segmentation Method of Bionic Cochlea

Depending on different N, now test two cases.

1) Take the small N

Signals and Systems Lab Report

 Cochlear segmentation Average segmentation

We set N=4, and then used cochlear segmentation and average segmentation

to recover the signal. The cochlear recovery signal could already hear the content

vaguely, but the average segmentation could not.

Due to the influence of the vocal organs of the human body, the components

of the high-frequency part of the frequency spectrum of the speech signal are

relatively reduced compared with the low-frequency part, and its energy is also

much smaller than that of the low-frequency part.

It is concluded that cochlea segmentation is better than average

segmentation when the number of segments is small.

2) No limit to the number of segmentations

When the number of segments is not limited, the increase in the number of

segments will reduce the frequency interval of each segment. When it is small to

a certain extent, the filter will be unstable, resulting in failure to continue to

Signals and Systems Lab Report

recover the signal, as shown in the following figure:

Cochlear segmentation Average segmentation

However, the cochlea shows this condition at 20 segments, and the average

segment shows this condition at more than 100 segments.

When the two can recover the signal, the maximum segment recovery, and

the average segment effect is better.

According to the two conditions, we concluded that the cochlea segmental

recovery efficiency is high, and the average segmental recovery upper limit is

high.

2. Analysis of the Cut-off Frequency of LPF

As the cutoff frequency is increased, the signal content is restored better,

but the tone is lower and spikier.

3. Changing the Carrier Frequency Calculation Method

Under the conditions of N = 10 and Cut-off Frequency = 50 Hz, we tried to

change the calculation method of the sinusoidal carrier signal frequency.

Different from the original method of using the midpoint of the upper and

lower bounds of the passband, we tried to use the geometric mean, arithmetic

mean, harmonic mean, and square mean respectively.

Signals and Systems Lab Report

Figure 8 Different carrier frequency calculation method

According to the result images, it can be guessed that these differences are

related to the distribution of high-frequency and low-frequency components in

the original speech signal. You can try to use different calculation methods to

deal with signals of different passbands to find a better solution.

4. ToneVocoder CONSOLE Design

To facilitate the adjustment of parameters to quickly obtain experimental

results, we use MATLAB App Designer to provide a visual console for the sound

wave and spectrum display of the synthesis results. This console can provide a

visual operation interface for parameter changes such as bandpass mode

selection, SSN signal addition, filter order adjustment, and cutoff frequency

adjustment, and output the running results to the "./Output" folder.

Signals and Systems Lab Report

Figure 9 ToneVocoder CONSOLE

Discussion

Further ideas

1. Replace the carrier signal with spectral noise at a certain frequency

According to research, the closer the characteristics of the carrier signal

are to the speech spectrum, the better the effect of signal restoration will be.

Thus, replacing the original sinusoidal carrier signal with a carrier signal

with spectral characteristics may effectively improve the signal recovery

effect.

However, the reason for decomposing and transmitting the original signal

is that the human voice signal often has a strong continuity, and the

transmission distortion of the continuous signal on the device is often large,

so this method is likely to increase the loss of transmission.

2. Spectral PEAK solution

Due to the influence of the vocal organs of the human body, the frequency

spectrum of the voice signal is relatively reduced in the high-frequency part

compared to the low-frequency part, and the SNR is low, causing the high-

frequency signal to gradually weaken during transmission and gradually

Signals and Systems Lab Report

submerged by noise. To improve the quality of signal transmission, it is

necessary to pre-emphasize the speech signal. Pre-emphasis can increase the

energy of the speech signal in the high-frequency part, improve its signal-to-

noise ratio, and at the same time make the signal spectrum of the high-

frequency part relatively flat.

Due to the strong time-varying nature of the speech signal, it is a better

choice to divide the signal into frames. For brief periods of time, we can

approximate that the characteristics of the sound are constant.

Figure 10 SMSP Algorithm

It should be noted that due to technical conditions and internal space

limitations, the number of tiny electrodes that can be used for cochlear

implants to stimulate human nerves is limited. Therefore, we need to make

the most efficient use of the limited number of channels.

After the signal is frequency-screened, the passbands with the highest

signal transmission efficiency are found by calculating the power spectrum,

and they are transmitted preferentially. Finally, we can test the restoration

effect.

Signals and Systems Lab Report

Problems during the project

1. Segmentation method innovation.

2. Code implementation of task requirements.

3. Code specification and code docking.

What we have learned

1. Review how to use MATLAB functions to conduct audio signal processing.

2. Accumulated knowledge related to sound generation, synthesis transfer, etc.,

laying the foundation for future processing that may be required in similar

projects.

3. Learn how to collect and refer to relevant materials, and further develop

assumptions and discussions, construct models and corresponding

explanations.

Signals and Systems Lab Report

References

Ince, A. N. (1992). Digital Speech Processing: Speech Encoding, Synthesis, and

Recognition. Kluwer Academic Publishers. https://doi.org/10.1007/978-1-4757-

2148-5

Steeneken, H. J. m, & Houtgast, T. (1999). Mutual Dependence of the Octave-Band

Weights in Predicting Speech Intelligibility. Mutual Dependence of the Octave-

Band Weights in Predicting Speech Intelligibility, 28(2), 109–123.

https://doi.org/https://doi.org/10.1016/S0167-6393(99)00007-2.

王旭 电子耳蜗音频信号处理系统设计 [D]. 西安电⼦科技⼤学, 2017

https://doi.org/10.1007/978-1-4757-2148-5
https://doi.org/10.1007/978-1-4757-2148-5
https://doi.org/https:/doi.org/10.1016/S0167-6393(99)00007-2

Signals and Systems Lab Report

Appendix 1

% #ToneVocoder#

clear;clc;

% Import the sound_read

[sound_read, fs] = audioread('Sound.wav');

t = (0 : (length(sound_read) - 1)) / fs;

% Veriables Setting

SSN = 'N'; % Add SNR 'Y' or not 'N'

Mode = 1; % Equal frequency: 0 | Average cochlea length: 1

N_sub = 2; % Number of segments

N_BPF = 4; % BPF order

Cf = 50; % Cut-off frequence of LPF

N_LPF = 4; % LPF order

% Tone Vocoder

% Add SNR

if SSN == 'Y'

 sound_read = getSSN(sound_read, fs);

end

% Passband Mode

% Mode 0 is Equal frequency

if Mode == 0

 Nmax = N_sub;

 fmin = 200;

 fmax = 7000;

 % Generate an array of buffer filter coefficients

 b = zeros(Nmax, 2 * N_BPF + 1);

Signals and Systems Lab Report

 a = zeros(Nmax, 2 * N_BPF + 1);

 gap = (fmax - fmin) / Nmax;

 for j = 1 : Nmax

 [b(j, :), a(j, :)] = butter(N_BPF, [fmin + (j-1)*gap fmin + j*gap] / fs * 2);

 end

 % Generate sub-bands

 cuted = zeros(Nmax, length(sound_read));

 for j = 1 : Nmax

 cuted(j, :) = filter(b(j, :), a(j, :), sound_read);

 end

 % Generate the Envelope

 envelopes = Envelope(cuted(:, :), fs, N_LPF, Cf);

 % Carrier loaded

 loaded = zeros(Nmax, length(sound_read));

 gap = (fmax - fmin) / Nmax;

 for j = 1 : Nmax

 for k = 1 : length(sound_read)

 loaded(j, k) = envelopes(j, k) .* cos(2*pi * (fmin + (j-1/2)*gap) * (k-1) / fs);

 end

 end

 % Synthesis and normalization

 output = zeros(1, length(sound_read));

 for j = 1 : Nmax

 output = output + loaded(j, :);

 end

 % Display the output

 sound(output, fs);

 figure;

 plot(t, output);

 if SSN == 'Y'

audiowrite(['./Output/EqualFrequency_WithSSN_',num2str(N_sub),'Bands_',num2str(

Cf),'Hz.wav'], output, fs);

Signals and Systems Lab Report

 end

 if SSN == 'N'

audiowrite(['./Output/EqualFrequency_',num2str(N_sub),'Bands_',num2str(Cf),'Hz.wa

v'], output, fs);

 end

 % Mode 1 is Average cochlea length

elseif Mode == 1

 dmin = (50 * log(1827 / 827)) / (3 * log(10));

 dmax = (50 * log(35827 / 827)) / (3 * log(10));

 Nmax = N_sub;

 % Generate an array of buffer filter coefficients

 b = zeros(Nmax, 2 * N_BPF + 1);

 a = zeros(Nmax, 2 * N_BPF + 1);

 gap = (dmax - dmin) / Nmax;

 for j = 1 : Nmax

 [b(j, :), a(j, :)] = butter(N_BPF, [alter(dmin + (j-1)*gap) alter(dmin + j*gap)] / fs

* 2);

 end

 % Generate sub-bands

 cuted = zeros(Nmax, length(sound_read));

 for j = 1 : Nmax

 cuted(j, :) = filter(b(j, :), a(j, :), sound_read);

 end

 % Generate the Envelope

 envelopes = Envelope(cuted(:, :), fs, N_LPF, Cf);

 % Carrier loaded

 loaded = zeros(Nmax, length(sound_read));

 gap = (dmax - dmin) / Nmax;

 for j = 1 : Nmax

 for k = 1 : length(sound_read)

Signals and Systems Lab Report

 loaded(j, k) = envelopes(j, k) .* cos(2*pi * alter(dmin + (j-1/2)*gap) * (k-1) /

fs);

 end

 end

 % Synthesis and normalization

 output = zeros(1, length(sound_read));

 for j = 1 : Nmax

 output = output + loaded(j, :);

 end

 % Display the outputs

% sound(output, fs);

 figure;

 subplot(2, 1, 1), plot(t, output);

 ak = fftshift(abs(fft(output)));

 w = linspace(-7000, 7000, length(abs(fft(output))));

 subplot(2, 1, 2), plot(w, ak);

 % Save

 if SSN == 'Y'

audiowrite(['./Output/Cochlea_WithSSN_',num2str(N_sub),'Bands_',num2str(Cf),'Hz.

wav'], output, fs);

 end

 if SSN == 'N'

audiowrite(['./Output/Cochlea_',num2str(N_sub),'Bands_',num2str(Cf),'Hz.wav'],

output, fs);

 end

end

% Functions

Signals and Systems Lab Report

% Generate SSN

function Out = getSSN(sound_read, fs)

sound_read = sound_read';

nfft = 512;

noverlap = nfft / 2;

Windows = hamming(nfft);

% Returns the power spectral density

[Pxx,w] = pwelch(repmat(sound_read, 1, 10), Windows, noverlap, nfft, fs);

% Generate filter

b = fir2(3000, w/(fs / 2), sqrt(Pxx / max(Pxx)));

% Generate white noise

N = length(sound_read);

noise = 1 - 2 * rand(1, N + length(b) - 1);

% Generate SSN

ssn = filter(b, 1, noise);

ssn = ssn(length(b) : end);

% Adjust the energy of SSN

ssn = ssn / norm(ssn) * norm(sound_read) * 10 ^ (1 / 4);

% Addition sound_read with ssn

Out = sound_read + ssn;

% Normalize out to sound_read

Out = Out / norm(Out) * norm(sound_read);

end

% Batch Extract Envelopes

function E = Envelope(Y, fs, N1, cf)

[b, a] = butter(N1, cf / (fs / 2), "low");

sizeY = size(Y);

m1 = sizeY(1);

m2 = sizeY(2);

Y = abs(Y);

E = zeros(m1, m2);

for n = 1 : m1

 E(n, :) = filter(b, a, Y(n, :));

end

end

% f-d Alter

Signals and Systems Lab Report

function f = alter(d)

f=165.4*(10^(0.06*d)-1);

end

Signals and Systems Lab Report

Appendix 2

classdef ToneVocoder < matlab.apps.AppBase

 % Properties that correspond to app components

 properties (Access = public)

 UIFigure matlab.ui.Figure

 GridLayout matlab.ui.container.GridLayout

 LeftPanel matlab.ui.container.Panel

 SETTINGButton matlab.ui.control.Button

 FCUTSlider matlab.ui.control.Slider

 FCUTSliderLabel matlab.ui.control.Label

 BANDSlider matlab.ui.control.Slider

 BANDSliderLabel matlab.ui.control.Label

 ADDSSNButtonGroup matlab.ui.container.ButtonGroup

 NoButton matlab.ui.control.RadioButton

 YesButton matlab.ui.control.RadioButton

 BPFMODEButtonGroup matlab.ui.container.ButtonGroup

 Mode1Button matlab.ui.control.RadioButton

 Mode0Button matlab.ui.control.RadioButton

 N_LPFEditField matlab.ui.control.NumericEditField

 N_LPFEditFieldLabel matlab.ui.control.Label

 N_BPFEditField matlab.ui.control.NumericEditField

 N_BPFEditFieldLabel matlab.ui.control.Label

 RightPanel matlab.ui.container.Panel

 SoundButton matlab.ui.control.Button

 GenerateButton matlab.ui.control.Button

 OpenButton matlab.ui.control.Button

 UIAxes2 matlab.ui.control.UIAxes

 UIAxes matlab.ui.control.UIAxes

 end

 % Properties that correspond to apps with auto-reflow

 properties (Access = private)

 onePanelWidth = 576;

 end

Signals and Systems Lab Report

 properties (Access = private)

 SSN = 'N'; % Add SNR 'Y' or not 'N'

 Mode = 0; % Equal frequency: 0 | Average cochlea length: 1

 N_sub = 4; % Number of segments

 N_BPF = 4; % BPF order

 Cf = 50; % Cut-off frequence of LPF

 N_LPF = 4; % LPF order

 sound_read % Description

 t % Description

 y % Description

 fs % Description

 w0 % Description

 ak % Description

 isOpen = 0; % Description

 source % Description

 end

 methods (Access = private)

function results = main (app)

% Tone Vocoder

mkdir Output\

% Add SNR

if app.SSN == 'Y'

app.sound_read = getSSN(app, app.sound_read, app.fs);

end

Signals and Systems Lab Report

% Passband Mode

% Mode 0 Equal frequency

if app.Mode == 0

Nmax = app.N_sub;

fmin=200;

fmax=7000;

% Generate an array of buffer filter coefficients

b = zeros(Nmax, 2 * app.N_BPF + 1);

a = zeros(Nmax, 2 * app.N_BPF + 1);

gap = (fmax - fmin) / Nmax;

for j = 1 : Nmax

[b(j, :), a(j, :)] = butter(app.N_BPF, [fmin + (j-1)*gap fmin + j*gap] / app.fs * 2);

end

% Generate sub-bands

cuted = zeros(Nmax, length(app.sound_read));

for j = 1 : Nmax

cuted(j, :) = filter(b(j, :), a(j, :), app.sound_read);

end

% Generate the Envelope

envelopes = Envelope(app, cuted(:, :), app.fs, app.N_LPF, app.Cf);

% Carrier loaded

loaded = zeros(Nmax, length(app.sound_read));

gap = (fmax - fmin) / Nmax;

for j = 1 : Nmax

for k = 1 : length(app.sound_read)

loaded(j, k) = envelopes(j, k) .* cos(2*pi * (fmin + (j-1/2)*gap) * (k-1) / app.fs);

end

end

Signals and Systems Lab Report

% Synthesis and normalization

output = zeros(1, length(app.sound_read));

for j = 1 : Nmax

output = output + loaded(j, :);

end

% % Display the output

% sound(output, app.fs);

% figure;

% plot(app.t, output);

app.ak = fftshift(abs(fft(output)));

app.w0 = linspace(-7000, 7000, length(abs(fft(output))));

if app.SSN == 'Y'

audiowrite(['./Output/EqualFrequency_WithSSN_',num2str(app.N_sub),'Bands_',num

2str(app.Cf),'Hz.wav'], output, app.fs);

end

if app.SSN == 'N'

audiowrite(['./Output/EqualFrequency_',num2str(app.N_sub),'Bands_',num2str(app.C

f),'Hz.wav'], output, app.fs);

end

app.y = output;

results = [output, app.fs, app.t];

% Mode 1 Average cochlea length

elseif app.Mode == 1

dmin = (50 * log(1827 / 827)) / (3 * log(10));

dmax = (50 * log(35827 / 827)) / (3 * log(10));

Nmax = app.N_sub;

% Generate an array of buffer filter coefficients

b = zeros(Nmax, 2 * app.N_BPF + 1);

Signals and Systems Lab Report

a = zeros(Nmax, 2 * app.N_BPF + 1);

gap = (dmax - dmin) / Nmax;

for j = 1 : Nmax

[b(j, :), a(j, :)] = butter(app.N_BPF, [alter(app, dmin + (j-1)*gap) alter(app, dmin +

j*gap)] / app.fs * 2);

end

% Generate sub-bands

cuted = zeros(Nmax, length(app.sound_read));

for j = 1 : Nmax

cuted(j, :) = filter(b(j, :), a(j, :), app.sound_read);

end

% Generate the Envelope

envelopes = Envelope(app, cuted(:, :), app.fs, app.N_LPF, app.Cf);

% Carrier loaded

loaded = zeros(Nmax, length(app.sound_read));

gap = (dmax - dmin) / Nmax;

for j = 1 : Nmax

for k = 1 : length(app.sound_read)

loaded(j, k) = envelopes(j, k) .* cos(2*pi * alter(app, dmin + (j-1/2)*gap) * (k-1) /

app.fs);

end

end

% Synthesis and normalization

output = zeros(1, length(app.sound_read));

for j = 1 : Nmax

output = output + loaded(j, :);

end

% % Display the outputs

% pause(5);

% sound(output, app.fs);

Signals and Systems Lab Report

% figure;

% plot(app.t, output);

app.ak = fftshift(abs(fft(output)));

app.w0 = linspace(-7000, 7000, length(abs(fft(output))));

if app.SSN == 'Y'

audiowrite(['./Output/Cochlea_WithSSN_',num2str(app.N_sub),'Bands_',num2str(app

.Cf),'Hz.wav'], output, app.fs);

end

if app.SSN == 'N'

audiowrite(['./Output/Cochlea_',num2str(app.N_sub),'Bands_',num2str(app.Cf),'Hz.w

av'], output, app.fs);

end

app.y = output;

results = [output, app.fs, app.t];

end

end

% Functions

% Generate SSN

function Out = getSSN(~, sound_read, fs)

nfft = 512;

noverlap = nfft / 2;

Windows = hamming(nfft);

% Returns the power spectral density

[Pxx,w] = pwelch(repmat(sound_read, 1, 10), Windows, noverlap, nfft, fs);

% Generate filter

b = fir2(3000, w/(fs / 2), sqrt(Pxx / max(Pxx)));

% Generate white noise

N = length(sound_read);

noise = 1 - 2 * rand(1, N + length(b) - 1);

% Generate SSN

Signals and Systems Lab Report

ssn = filter(b, 1, noise);

ssn = ssn(length(b) : end);

% Adjust the energy of SSN

ssn = ssn / norm(ssn) * norm(sound_read) * 10 ^ (1 / 4);

% Addition sound_read with ssn

Out = sound_read + ssn';

% Normalize out to sound_read

Out = Out / norm(Out) * norm(sound_read);

end

% Batch Extract Envelopes

function E = Envelope(~, Y, fs, N1, cf)

[b, a] = butter(N1, cf / (fs / 2), "low");

sizeY = size(Y);

m1 = sizeY(1);

m2 = sizeY(2);

Y = abs(Y);

E = zeros(m1, m2);

for n = 1 : m1

E(n, :) = filter(b, a, Y(n, :));

end

end

% f-d Alter

function f = alter(~, d)

f=165.4*(10^(0.06*d)-1);

end

end

% Callbacks that handle component events

methods (Access = private)

Signals and Systems Lab Report

% Selection changed function: BPFMODEButtonGroup

function BPFMODEButtonGroupSelectionChanged(app, event)

selectedButton = app.BPFMODEButtonGroup.SelectedObject;

if selectedButton == app.Mode0Button

app.Mode = 0;

elseif selectedButton == app.Mode1Button

app.Mode = 1;

end

end

% Selection changed function: ADDSSNButtonGroup

function ADDSSNButtonGroupSelectionChanged(app, event)

selectedButton = app.ADDSSNButtonGroup.SelectedObject;

if selectedButton == app.YesButton

app.SSN = 'Y';

elseif selectedButton == app.NoButton

app.SSN = 'N';

end

end

% Button pushed function: GenerateButton

function GenerateButtonPushed(app, event)

if app.isOpen == 1

app.sound_read = app.source;

app.main;

plot(app.UIAxes, app.t, app.y);

plot(app.UIAxes2, app.w0, app.ak);

else

msgbox('Please open a sound file ~')

end

end

% Value changed function: BANDSlider

function BANDSliderValueChanged(app, event)

value = app.BANDSlider.Value;

Signals and Systems Lab Report

app.N_sub = ceil(value);

end

% Value changed function: FCUTSlider

function FCUTSliderValueChanged(app, event)

value = app.FCUTSlider.Value;

app.Cf = ceil(value);

end

% Value changed function: N_BPFEditField

function N_BPFEditFieldValueChanged(app, event)

value = app.N_BPFEditField.Value;

app.N_BPF = value;

end

% Value changed function: N_LPFEditField

function N_LPFEditFieldValueChanged(app, event)

value = app.N_LPFEditField.Value;

app.N_LPF = value;

end

% Button pushed function: OpenButton

function OpenButtonPushed(app, event)

[filename,pathname] = uigetfile({'*.wav'},'请打开音频捏');

if pathname ~= 0

str = [pathname filename];

app.isOpen = 1;

[app.source, app.fs] = audioread(str);

app.sound_read = app.source;

app.t = (0 : (length(app.sound_read) - 1)) / app.fs;

app.y = app.sound_read';

plot(app.UIAxes, app.t, app.y);

app.ak = fftshift(abs(fft(app.y)));

app.w0 = linspace(-7000, 7000, length(abs(fft(app.y))));

plot(app.UIAxes2, app.w0, app.ak);

end

Signals and Systems Lab Report

end

% Button pushed function: SoundButton

function SoundButtonPushed(app, event)

if app.isOpen == 1

sound(app.y, app.fs);

else

msgbox('Please open a sound file ~')

end

end

% Changes arrangement of the app based on UIFigure width

function updateAppLayout(app, event)

currentFigureWidth = app.UIFigure.Position(3);

if(currentFigureWidth <= app.onePanelWidth)

% Change to a 2x1 grid

app.GridLayout.RowHeight = {410, 410};

app.GridLayout.ColumnWidth = {'1x'};

app.RightPanel.Layout.Row = 2;

app.RightPanel.Layout.Column = 1;

else

% Change to a 1x2 grid

app.GridLayout.RowHeight = {'1x'};

app.GridLayout.ColumnWidth = {199, '1x'};

app.RightPanel.Layout.Row = 1;

app.RightPanel.Layout.Column = 2;

end

end

end

% Component initialization

methods (Access = private)

% Create UIFigure and components

Signals and Systems Lab Report

function createComponents(app)

% Create UIFigure and hide until all components are created

app.UIFigure = uifigure('Visible', 'off');

app.UIFigure.AutoResizeChildren = 'off';

app.UIFigure.Position = [100 100 717 410];

app.UIFigure.Name = 'MATLAB App';

app.UIFigure.SizeChangedFcn = createCallbackFcn(app, @updateAppLayout, true);

% Create GridLayout

app.GridLayout = uigridlayout(app.UIFigure);

app.GridLayout.ColumnWidth = {199, '1x'};

app.GridLayout.RowHeight = {'1x'};

app.GridLayout.ColumnSpacing = 0;

app.GridLayout.RowSpacing = 0;

app.GridLayout.Padding = [0 0 0 0];

app.GridLayout.Scrollable = 'on';

% Create LeftPanel

app.LeftPanel = uipanel(app.GridLayout);

app.LeftPanel.Layout.Row = 1;

app.LeftPanel.Layout.Column = 1;

% Create N_BPFEditFieldLabel

app.N_BPFEditFieldLabel = uilabel(app.LeftPanel);

app.N_BPFEditFieldLabel.HorizontalAlignment = 'right';

app.N_BPFEditFieldLabel.Position = [14 102 43 22];

app.N_BPFEditFieldLabel.Text = 'N_BPF';

% Create N_BPFEditField

app.N_BPFEditField = uieditfield(app.LeftPanel, 'numeric');

app.N_BPFEditField.ValueChangedFcn = createCallbackFcn(app,

@N_BPFEditFieldValueChanged, true);

app.N_BPFEditField.Position = [62 99 52 28];

app.N_BPFEditField.Value = 4;

Signals and Systems Lab Report

% Create N_LPFEditFieldLabel

app.N_LPFEditFieldLabel = uilabel(app.LeftPanel);

app.N_LPFEditFieldLabel.HorizontalAlignment = 'right';

app.N_LPFEditFieldLabel.Position = [13 66 42 22];

app.N_LPFEditFieldLabel.Text = 'N_LPF';

% Create N_LPFEditField

app.N_LPFEditField = uieditfield(app.LeftPanel, 'numeric');

app.N_LPFEditField.ValueChangedFcn = createCallbackFcn(app,

@N_LPFEditFieldValueChanged, true);

app.N_LPFEditField.Position = [62 63 52 28];

app.N_LPFEditField.Value = 4;

% Create BPFMODEButtonGroup

app.BPFMODEButtonGroup = uibuttongroup(app.LeftPanel);

app.BPFMODEButtonGroup.SelectionChangedFcn = createCallbackFcn(app,

@BPFMODEButtonGroupSelectionChanged, true);

app.BPFMODEButtonGroup.Title = 'BPF MODE';

app.BPFMODEButtonGroup.Position = [19 291 155 51];

% Create Mode0Button

app.Mode0Button = uiradiobutton(app.BPFMODEButtonGroup);

app.Mode0Button.Text = 'Mode 0';

app.Mode0Button.Position = [10 4 62 22];

app.Mode0Button.Value = true;

% Create Mode1Button

app.Mode1Button = uiradiobutton(app.BPFMODEButtonGroup);

app.Mode1Button.Text = 'Mode 1';

app.Mode1Button.Position = [76 4 65 22];

% Create ADDSSNButtonGroup

app.ADDSSNButtonGroup = uibuttongroup(app.LeftPanel);

Signals and Systems Lab Report

app.ADDSSNButtonGroup.SelectionChangedFcn = createCallbackFcn(app,

@ADDSSNButtonGroupSelectionChanged, true);

app.ADDSSNButtonGroup.Title = 'ADD SSN';

app.ADDSSNButtonGroup.Position = [19 238 155 49];

% Create YesButton

app.YesButton = uiradiobutton(app.ADDSSNButtonGroup);

app.YesButton.Text = 'Yes';

app.YesButton.Position = [9 2 50 22];

% Create NoButton

app.NoButton = uiradiobutton(app.ADDSSNButtonGroup);

app.NoButton.Text = 'No';

app.NoButton.Position = [75 2 43 22];

app.NoButton.Value = true;

% Create BANDSliderLabel

app.BANDSliderLabel = uilabel(app.LeftPanel);

app.BANDSliderLabel.HorizontalAlignment = 'right';

app.BANDSliderLabel.Position = [12 205 39 22];

app.BANDSliderLabel.Text = 'BAND';

% Create BANDSlider

app.BANDSlider = uislider(app.LeftPanel);

app.BANDSlider.Limits = [0 150];

app.BANDSlider.ValueChangedFcn = createCallbackFcn(app,

@BANDSliderValueChanged, true);

app.BANDSlider.Position = [61 215 114 3];

app.BANDSlider.Value = 4;

% Create FCUTSliderLabel

app.FCUTSliderLabel = uilabel(app.LeftPanel);

app.FCUTSliderLabel.HorizontalAlignment = 'right';

app.FCUTSliderLabel.Position = [13 158 37 22];

app.FCUTSliderLabel.Text = 'FCUT';

Signals and Systems Lab Report

% Create FCUTSlider

app.FCUTSlider = uislider(app.LeftPanel);

app.FCUTSlider.Limits = [0 200];

app.FCUTSlider.ValueChangedFcn = createCallbackFcn(app,

@FCUTSliderValueChanged, true);

app.FCUTSlider.Position = [61 168 114 3];

app.FCUTSlider.Value = 50;

% Create SETTINGButton

app.SETTINGButton = uibutton(app.LeftPanel, 'push');

app.SETTINGButton.FontSize = 14;

app.SETTINGButton.Position = [12 353 174 38];

app.SETTINGButton.Text = 'SETTING';

% Create RightPanel

app.RightPanel = uipanel(app.GridLayout);

app.RightPanel.Layout.Row = 1;

app.RightPanel.Layout.Column = 2;

% Create UIAxes

app.UIAxes = uiaxes(app.RightPanel);

title(app.UIAxes, 'Sound Wave')

zlabel(app.UIAxes, ' ')

app.UIAxes.FontAngle = 'italic';

app.UIAxes.Position = [28 146 220 209];

% Create UIAxes2

app.UIAxes2 = uiaxes(app.RightPanel);

title(app.UIAxes2, 'Spectrum')

app.UIAxes2.FontAngle = 'italic';

app.UIAxes2.Position = [258 146 231 209];

% Create OpenButton

Signals and Systems Lab Report

app.OpenButton = uibutton(app.RightPanel, 'push');

app.OpenButton.ButtonPushedFcn = createCallbackFcn(app, @OpenButtonPushed,

true);

app.OpenButton.Position = [66 90 100 23];

app.OpenButton.Text = 'Open';

% Create GenerateButton

app.GenerateButton = uibutton(app.RightPanel, 'push');

app.GenerateButton.ButtonPushedFcn = createCallbackFcn(app,

@GenerateButtonPushed, true);

app.GenerateButton.Position = [217 90 100 23];

app.GenerateButton.Text = 'Generate';

% Create SoundButton

app.SoundButton = uibutton(app.RightPanel, 'push');

app.SoundButton.ButtonPushedFcn = createCallbackFcn(app, @SoundButtonPushed,

true);

app.SoundButton.Position = [368 90 100 23];

app.SoundButton.Text = 'Sound';

% Show the figure after all components are created

app.UIFigure.Visible = 'on';

end

end

% App creation and deletion

methods (Access = public)

% Construct app

function app = ToneVocoder

% Create UIFigure and components

createComponents(app)

Signals and Systems Lab Report

% Register the app with App Designer

registerApp(app, app.UIFigure)

if nargout == 0

clear app

end

end

% Code that executes before app deletion

function delete(app)

% Delete UIFigure when app is deleted

delete(app.UIFigure)

end

end

end

