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Abstract—This study delves into the development and eval-
uation of binary classification models for solving binary clas-
sification problems. Specifically, the Logistic Regression model
and the Multi-Layer Perceptron (MLP) model are implemented
using Python and Numpy. The MLP model offers flexibility in
configuring the number of hidden layers and neurons. The impact
of varying hyperparameters on model performance is observed,
alongside the evaluation of these models using metrics such as
Recall, Precision, and F1 score.

Index Terms—Logistic Regression, MLP, Binary Classification

I. INTRODUCTION

Binary classification is a fundamental task in the field of
machine learning, with applications spanning across various
domains. The ability to categorize data into one of two classes
is a fundamental building block for more complex machine
learning tasks. This research delves into the development and
evaluation of binary classification models, with a specific focus
on two prominent approaches: Logistic Regression and Multi-
Layer Perceptron (MLP) neural networks.

The Logistic Regression model is a well-established method
for binary classification, known for its simplicity and inter-
pretability. It models the probability of an instance belonging
to a specific class and provides insights into the relationship
between input features and the binary outcome.

On the other hand, the MLP neural network represents a
more flexible and expressive approach to binary classification.
MLPs consist of multiple layers, including input, hidden,
and output layers, allowing for nonlinear relationships to be
captured within the data. The number of hidden layers and
neurons within these layers can be adjusted, making MLPs
highly adaptable to various classification tasks.

In this research, we not only implement these models but
also examine their performance under different configurations.
We create binary classification datasets. We employ key met-
rics such as Recall, Precision, and F1 score to assess the
models’ ability to correctly classify positive and negative
instances.

Eventually, we explore the impact of hyperparameters, such
as learning rate and model frame, on the training process and
final model performance. We analyze how adjustments to these
hyperparameters affect the stability of the models.

II. PROBLEM FORMULATION

A. Performance Metrics

Precision:
P =

TP

TP + FP
(1)

Recall:
R =

TP

TP + FN
(2)

F1 Score:
F1 =

2 · P ·R
P +R

(3)

where, TP = True Positives, TN = True Negatives, FP =
False Positives, FN = False Negatives.

B. Activation Functions

Sigmoid:

f(z) =
1

1 + e−z
(4)

Relu:
f(z) = max(0, z) (5)

III. THE IMPLEMENTATION OF LOGISTIC
REGRESSION MODEL

A. Logistic Regression Principles

Logistic Regression is a widely used technique in machine
learning, particularly for binary classification problems. It
differs from linear classification mainly due to its use of the
sigmoid function as a link function, which transforms the
linear combination of input features into a probability between
0 and 1.

The sigmoid function (σ) is defined as equation (4). This
function offers differentiability, making it suitable for gradient-
based optimization, and it ensures that the output is confined
to the range of (0, 1), allowing it to represent probabilities.

In Logistic Regression, the likelihood function (L(w)) is
central to the loss calculation. Assuming that the training
examples are sampled independent and identically distributed,
we can write the likelihood function:

L(w) =
N∏
i=1

p(t(i)|x(i);w)
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We can convert the maximization problem into minimization
so that we can write the loss function:

llog(w) = −logL(w)

= −
N∑
i=1

t(i)log(1− p(C = 0|x(i);w))

−
N∑
i=1

(1− t(i))log p(C = 0|x(i);w)

which is a convex function of w.
This loss function penalizes discrepancies between pre-

dicted probabilities and actual labels.
To optimize the model, gradient-based optimization algo-

rithms are typically used. The gradient of the loss with respect
to model parameters (wj) is computed as:

∂l

∂wj
=

∑
i

x
(i)
j (t(i) − p(C = 1|x(i);w))

This gradient guides parameter updates during training,
ensuring convergence to a configuration that minimizes the
loss. And the gradient descent for logistic regression:

w
(t+1)
j ← w

(t)
j − λ

∑
i

x
(i)
j

(
t(i) − p(C = 1|x(i);w)

)
Logistic Regression’s simplicity and interpretability make it

a valuable tool and the most basic implementation for binary
classification tasks.

B. Code Implementation

1) Model Class Implementation: In this section, we will
provide an overview of the code implementation of Logistic
Regression. The code structure diagram of the class imple-
mentation is as follows:

Fig. 1. Logistic Regression Class

a) The constructor __init__ initializes an instance of the
LogisticRegression class with the following parame-
ters:

• self.lr: Learning rate, with a default value of 0.01.

• num_iter: Number of iterations for training the model.
• weights: The weight coefficients for features.
• bias: The bias term is initially set to ‘None‘.
• losses: An empty list to store the loss values during

training.

Fig. 2. Init Function

b) Sigmoid Function
The _sigmoid method implements the sigmoid activation

function, defined as:

σ(z) =
1

1 + e−z

This function maps the input z to a value in the range [0, 1]
and is used to model the probability of the positive class in
logistic regression.

c) Loss Function
The loss method calculates the binary cross-entropy loss

between predicted values ypred and true labels y. It clips ypred
to ensure stability, computes the loss using the binary cross-
entropy formula, and returns the mean of the calculated loss.

Fig. 3. Loss Method

d) Model Training
The fit function in the logistic regression class is respon-

sible for training the model using the input data X and target
labels y. It iteratively updates these parameters to minimize
the logistic loss function. In each iteration:

It computes the predicted values y_predicted using the
sigmoid activation function. Then, calculates the gradients dw
and db of the logistic loss. After that, Updates the weights and
bias using gradient descent with a learning rate of self.lr
and records the loss for monitoring during training.

e) Prediction
The predict method makes predictions for new data

points represented by the feature matrix X . It follows these
steps: Compute the weighted sum of input features and bias:
z pred = X · weights + bias. And then, Apply the sigmoid
activation function to z pred to obtain the predicted probabil-
ities: y predicted = σ(z pred). Last, threshold the predicted
probabilities at 0.5 to classify data points into binary classes
(0 or 1).



Fig. 4. Fit Function

Overall, this class provides a simple implementation of
logistic regression for binary classification tasks, including
model initialization, training, and prediction.

Fig. 5. Predict Function

2) Dataset Construction: To test the Logistic Regression,
we need to create appropriate data to test various performance.
We use regular normalized discrete point sets and assign them
binary values:

Fig. 6. Dataset Construction

3) Training, Prediction and Testing: The code begins by
setting a random seed for reproducibility and generating
random data for a Logistic Regression experiment. Key hy-
perparameters, such as the learning rate (lr) and the number
of iterations (num_iter), are configured for the Logistic
Regression model. The model is trained on the generated
data, and predictions are made. Subsequently, essential per-
formance metrics, including precision, recall, and F1 score,
are calculated using appropriate functions. Finally, the results,
comprising precision, recall, and F1 score, are displayed in
the console output for evaluation.

4) Results Visualization: A complex set of codes was used
to visualize the results to facilitate analysis and iterative
optimization.

Fig. 7. Training of Logistic Regression

Fig. 8. Results Visualization

C. Output Analysis

1) Output Image and Loss Curve: The code aims to visu-
alize the results of the Logistic Regression model. It generates
two subplots. The first subplot illustrates the decision boundary
of the model by contouring the classification regions. Data
points are displayed as scatter points, with different colors
representing their respective classes. The decision boundary is
plotted as a distinct line. The second subplot depicts the loss
curve, showcasing how the loss function evolves over training
iterations (epochs). Both visualizations provide insights into
the model’s performance and training progress.

D. Model Optimization

1) Activation Function Selection: Activation Function Se-
lection Analysis: The choice of the sigmoid activation function
in our Logistic Regression (LR) model is a critical aspect



TABLE I
THE RESULT OF LOGISTIC REGRESSION

Precision Recall F1 Score Loss

0.9915 1.0000 0.9957 0.0180

Fig. 9. Output Image and Loss Curve

of our design. Here, we elaborate on the advantages and
drawbacks of using the sigmoid function:

• Advantages of Sigmoid Function:
– Smoothness: The sigmoid function is smooth and

differentiable, making it suitable for gradient-based
optimization algorithms like gradient descent. This
property enables efficient weight updates during
training.

– Normalization: The sigmoid function outputs values
in the range of (0, 1), effectively normalizing the
predictions as probabilities. This is particularly use-
ful for binary classification tasks.

• Drawback of Sigmoid Function:
– Vanishing Gradient: Sigmoid can suffer from the

vanishing gradient problem, especially in deep neural
networks with many layers. This can slow down or
hinder the convergence of the model during training.

The selection of the sigmoid function in our model is
motivated by its suitability for binary classification. However,
it’s essential to be aware of its limitations, particularly in the
context of deep neural networks, where alternatives like ReLU
and its variants are often preferred.

2) Hyperparameters Selection:
• Learning Rate (lr):

– Analysis: A learning rate was chosen because it
provides a good balance between fast convergence
and stability. It allows the model to make reasonably
large updates to the parameters in each iteration
without diverging. In this simple test, we tried dy-
namically processing the number of iterations, and
the diff was small.

• Number of Iterations (epoch):
– Analysis: The choice of 1000 iterations was made

based on experimentation. It was found that this
number of iterations was sufficient for the model
to converge and achieve good performance on the

dataset without overfitting. Further increasing the
number of iterations did not significantly improve
results.

Fig. 10. Loss Comparison for lr Chose

3) Tolerance: The tolerance parameter, denoted as ϵ, is
a crucial hyperparameter in the training process of machine
learning models, including Logistic Regression and Multi-
Layer Perceptron (MLP). It plays a significant role in deter-
mining when the training process should terminate and directly
affects the training time, stability and convergence behavior.

The tolerance parameter represents the acceptable change
in the loss function between two consecutive iterations, below
which the training process is considered to have converged. In
other words, if the change in the loss function falls below ϵ,
the training stops, as the model’s parameters are not changing
significantly.

Fig. 11. Tolerance

As shown in the figure, when the number of iterations is
set to 5000, due to the low loss reduction rate, the training is
terminated early(), effectively saving resources.

Fig. 12. Test Output

IV. THE IMPLEMENTATION OF MLP MODEL

A. Multilayer Perceptron Principles

The Multilayer Perceptron (MLP) is a fundamental type
of neural network that serves as the basis for more complex
architectures. It simulates the human brain’s functionality by



constructing artificial ”neurons” with activation functions and
connecting them in a structured manner.

In an MLP, neurons are organized into multiple layers:
• Input Layer: This is the first layer, which receives the

raw input data. Each neuron corresponds to a feature or
input dimension.

• Hidden Layers: Intermediate layers between the input
and output layers are referred to as hidden layers. These
layers extract and transform features from the input data.

• Output Layer: The final layer, known as the output layer,
produces the network’s predictions or classifications.

Neurons within a layer are fully connected to all neurons in
the subsequent layer, creating a dense network of connections.

For binary classification problems, the cross-entropy error
is commonly used to measure the model’s performance:

E = −
N∑

n=1

t(n) log(o(n)) + (1− t(n)) log(1− o(n))

o(n) = (1 + exp(−z(n)))−1

Training an MLP involves updating numerous parameters,
including the weights and biases. To accelerate training, the
backpropagation algorithm is employed. Backpropagation ef-
ficiently computes gradients using the chain rule of calculus.
The specific process is as follows:

1) Activation Functions: The choice of activation function
is crucial in neural networks, as it determines the network’s
ability to learn complex patterns. Two commonly used activa-
tion functions are:

• Sigmoid Function: Defined as σ(z) = 1
1+e−z , the

sigmoid function is often used in the output layer for
binary classification tasks.

• ReLU Function: Defined as ReLU(z) = max(0, z), the
Rectified Linear Unit (ReLU) function is preferred in
hidden layers due to its computational efficiency and its
ability to mitigate the vanishing gradient problem.

2) Forward Propagation: Forward propagation involves the
following steps: 1. Input data is fed into the input layer.
2. Data flows through hidden layers, where neurons apply
activation functions. 3. Output layer produces predictions or
classifications.

3) Backward Propagation: Backpropagation is a funda-
mental algorithm for training neural networks. It efficiently
computes gradients of the loss function with respect to each
weight by propagating errors backward through the network.
This process is accomplished using the chain rule of calculus,
making it a cornerstone of neural network training.

The batch gradient descent method is as follows:

wki ← wki − η
∂E

∂wki
= wki − η

N∑
n=1

∂E(o(n), t(n);w)

∂wki

These processes repeat iteratively during training to opti-
mize the MLP for accurate predictions.

B. Code Implementation
1) Overview: In this section, we will provide an overview

of the code implementation of MLP. The code structure
diagram of the class implementation is as follows:

Fig. 13. MLP Class

a) The constructor __init__ initializes an instance of the
MLP class with the following parameters:

• self.layer_sizes: A list specifying the sizes of the
neural network’s layers, including the input and output
layers.

• self.weights: An empty list that will store weight
matrices for connections between layers during model
initialization.

• self.biases: An empty list that will store bias vectors
for each layer during model initialization.

• self.losses: An empty list used to record the loss
values during training.

• self.num3loss: A variable that will be used to store
the number of iterations when the loss drops to the initial
30%.

• self.hasNum3loss: A boolean variable initially set
to ’False’ indicating whether ’num3loss’ is none.

Fig. 14. Init Function

b) Sigmoid Function
The _sigmoid method implements the sigmoid activation

function, defined as:

σ(z) =
1

1 + e−z



This function maps the input z to a value in the range [0, 1]
and is used to model the probability of the positive class.

c) Loss Function
The loss method calculates the binary cross-entropy loss

between predicted values ypred and true labels y. It clips ypred
to ensure stability, computes the loss using the binary cross-
entropy formula, and returns the mean of the calculated loss.

Fig. 15. Loss Method

d) Model Training
The fit function in the MLP class is responsible for

training the neural network using the given input data X and
target labels y. It iteratively updates the network’s weights and
biases to minimize the loss function. In each iteration:

It computes the output values y_predicted using the
sigmoid function for each neuron. Then, it calculates the
gradients dw and db of the loss function with respect to the
network’s parameters.

Afterwards, it updates the weights and biases using gradi-
ent descent with a learning rate of self.lr to adjust the
network’s parameters towards a more optimal configuration.
Throughout the training process, it records the loss values to
monitor the convergence and learning progress.

Fig. 16. Fit Function

e) Prediction
The predict method in the MLP class computes predic-

tions for new data points represented by the feature matrix X .
It follows these steps:

1) Compute the weighted sum of input features and biases:
z pred = X · weights + bias.

2) Apply the sigmoid activation function to z pred to ob-
tain predicted probabilities: y predicted = σ(z pred).

3) Threshold the predicted probabilities at 0.5 to classify
data points into binary classes (0 or 1).

This method offers a straightforward way to perform binary
classification predictions using the trained MLP model, assign-
ing data points to classes based on predicted probabilities.

Fig. 17. Predict Function

2) Dataset Construction: To test the Logistic Regression,
we need to create appropriate data to test various performance.
We use regular normalized discrete point sets and assign them
binary values:

Fig. 18. Dataset Construction

3) Training, Prediction and Testing: The implementation
of training is similar to logistic regression testing and will not
be described again. Here’s how to generate the desired model
structure:

4) Results Visualization: A complex set of codes was used
to visualize the results to facilitate analysis and iterative op-
timization. For the generation method of contour grid, please
refer to the attached code source file.

C. Output Analysis
Our MLP model implements arbitrary settings of the model

hierarchy. The output sample of a test sample is as follows:
The part in the box in the figure is the hierarchical structure

of the neural network that can be adjusted arbitrarily.
In addition to this, iteratively adjust the learning rate, the

number of iterations, and try new seeds to explore problems
that different structures may hide.

1) Width Test: [+] lr=0.025, epoch=250000

TABLE II
THE RESULT OF LOGISTIC REGRESSION

Precision Recall F1 Score Final Loss
0.7000 0.5224 0.5983 0.6342

0.8200 0.6119 0.7009 0.7484

0.8947 0.7612 0.8226 0.5845

0.9365 0.8806 0.9077 0.6618

where, neuron=[3, 6, 20, 50]



Fig. 19. Generate Model Structure

Fig. 20. Output Sample

2) Depth Test: The example in the picture is

[+] lr=0.01, epoch=160000

TABLE III
DEPTH TEST RESULTS

Precision Recall F1 Score Final Loss
0.9552 0.9552 0.9552 0.0346

1.0000 0.9701 0.9848 0.0127

1.0000 0.9851 0.9925 0.0043

1.0000 1.0000 1.0000 5.11e-06

where, layer = [2, 3, 6, 10]

Fig. 21. Width Test Output

Fig. 22. Depth Test Output

D. Model Optimization

1) Hyperparameters Analysis: In order to better analyze
and test the impact of model construction on the results, we
selected a more appropriate random number seed (there will
not be too much overlap between random points) and fixed
the seed to maintain the unity of irrelevant variables.

In addition, in order to test the impact of the number of
layers of the deep neural network, the number of neurons
in different layers is tentatively set to be the same when
compared.

• Learning Rate:
– Attempts: Select a learning rate of 0.015 for the

single-layer model, and 0.01 for the multiple-layer
model.

– Analysis: A learning rate of 0.01 was chosen because
it provides a good balance between fast convergence
and stability. It allows the model to make reasonably
large updates to the parameters in each iteration
without diverging.

– We record the number of iterations when the loss
drops to 30% of the initial value in the model, and
observe the loss curve to choose a better learning
rate. As shown in the figure:
In the width test as follow, the loss does not decrease
but increases when lr=0.3. After continuous testing,
gradually reduce the learning rate to prevent the
model overfitting.



• Tolerance:
– In the training of MLP, according to the actual

situation, we found that the loss may fluctuate greatly
during the training process. Some processing at-
tempts (such as using regularization methods, etc.)
cannot reduce this phenomenon well.

– However, when the hyperparameters are appropriate,
loss will eventually drop to a value close to 0. There-
fore, we removed the restriction on loss tolerance to
better monitor the model effect.

Fig. 23. Loss Curve Rising Example

2) Speculative Analysis of Width and Depth in Neural
Networks: Neural networks’ architecture, specifically their
width (number of neurons in each layer) and depth (number
of layers), significantly influences their learning capacity and
performance. Here we analyze how these dimensions affect
the network:

• Representational Power: A wider network can learn a
greater variety of linear feature combinations, while a
deeper network can capture more complex hierarchical
structures and abstractions. Increasing the width may
prove more effective, especially when the task requires
capturing a large number of low-level features.

• Vanishing/Exploding Gradients: Deep neural networks
may encounter vanishing or exploding gradients, impact-
ing their training efficiency and ultimate performance. In
contrast, wider, shallower networks are less likely to face
these issues.

• Optimization Difficulty: Optimizing deep networks is
generally more complex and challenging than shallower
ones. The interaction between layers in deep networks can
result in more complex loss surfaces, making it harder to
find good local minima.

• Overfitting Risk: As the width of the network increases,
so does the model’s capacity, which can lead to overfit-
ting, particularly when the number of training samples is
limited.

Although deep neural networks appear to be superior. Some-
times, a wider, shallower network may be easier to train and
provide similar or better performance than a deeper one.

3) Another Speculative Analysis: As the width of the neural
network increases, the probability of the loss surface reaching

a local optimum decreases. There is a novel perspective to
look at this problem:

Fig. 24. Saddle Surface in 2-D

As shown in the figure, when the dimensionality increases,
the probability that the loss function reaches the local optimal
value in all dimensions simultaneously decreases. That is,
there is a greater probability that it is not local optimal in
a certain dimension, forming an elliptical parabola. Instead, it
forms a high-dimensional saddle surface.

V. CONCLUSION AND FUTURE PROBLEMS

A. Conclusion

In this research, we explored the development and evalua-
tion of binary classification models, focusing on two distinct
approaches: Logistic Regression and Multi-Layer Perceptron
(MLP) neural networks. We investigated the principles, code
implementation, and optimization of both models to gain
insights into their performance and behavior.

Logistic Regression, with its simplicity and interpretabil-
ity, serves as a foundational binary classification technique.
We discussed its principles, including the sigmoid activation
function and loss function, and provided a detailed overview of
its code implementation. Through experiments, we observed
the impact of hyperparameters on the model’s training process
and final performance.

The MLP neural network, on the other hand, represents a
more common approach. We delved into its principles, cover-
ing aspects such as forward pass and backward propagation.
The code implementation of MLP showcased its adaptability,
allowing for the customization of model architecture, including
the number of layers and neurons in each layer. We conducted
experiments to explore the effects of varying model width and
depth on performance.

Results indicate that both models can achieve high pre-
cision, recall, and F1 scores when appropriately configured.
The choice between Logistic Regression and MLP depends
on the specific problem and dataset characteristics. Logistic



Regression excels in simplicity and efficiency. In contrast,
MLP offers greater flexibility and can better deal with complex
data.

Additionally, our experiments have displayed the impor-
tance of hyperparameter tuning, including the learning rate,
tolerance settings, and model architecture, in achieving optimal
model performance. These findings underscore the significance
of careful experimentation and parameter selection in machine
learning model development.

In conclusion, this research provides a comprehensive un-
derstanding of Logistic Regression and MLP models for binary
classification.

B. Future Problems

As our study delved into the development and evaluation
of binary classification models, there are several promising
directions for future research and exploration in this domain:

1) Other Activation Functions: Future research can investi-
gate the use of advanced activation functions like ReLU, Leaky
ReLU, and Parametric ReLU (PReLU). These functions may
offer improved convergence properties and mitigate issues like
the vanishing gradient problem.

2) Ensemble Learning: Exploring ensemble learning meth-
ods, such as Random Forests, Gradient Boosting, and Ad-
aBoost, in the context of binary classification can lead to
improved model accuracy and stability. Future research can
evaluate the effectiveness of ensemble techniques compared
to single-model approaches.

These future research directions hold the potential to con-
tribute to the development of more robust and accurate models
for a wide range of applications.
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