
Comparative Analysis of Clustering and
Dimensionality Reduction Techniques

1st Zhiling LI
Department of System Design and Intelligent Manufacturing

Southern University of Science and Technology
Shenzhen, China

12112748@mail.sustech.edu.cn

Abstract—This report presents a comprehensive study on
clustering and dimensionality reduction techniques using the K-
means, Soft K-means, PCA, and Linear AutoEncoder methods.
We utilize the wheat seed dataset for clustering analysis and
compare the performance of these algorithms. Additionally, we
explore dimensionality reduction on image data using PCA and
Linear AutoEncoder, followed by clustering using Soft K-means.
The performance of different methods is compared and analyzed.
The report aims to provide insights into the effectiveness of these
techniques in handling complex datasets.

Index Terms—K-means, Soft K-means, PCA, Linear Autoen-
coder, Clustering, Dimensionality Reduction

I. INTRODUCTION

CLUSTERING and dimensionality reduction are two such
techniques pivotal in data analysis, reducing complexity

for better visualization and understanding. This report focuses
on a comprehensive analysis of these techniques, employing
K-means and Soft K-means for clustering, alongside Princi-
pal Component Analysis (PCA) and Linear AutoEncoder for
dimensionality reduction. Using the wheat seed dataset, we
conduct an evaluation of the clustering algorithms, aiming to
understand their intrinsic data partitioning capabilities. In ad-
dition, we apply PCA and Linear AutoEncoder to image data,
further assessing the clustering results through Soft K-means
with an equivalence of principal component dimensions. This
multifaceted approach not only benchmarks the performance
of the algorithms but also shows their applicability across
different data types.

II. FORMULAS

A. K-means and Soft K-means

• Optimization method:

min
m,r

J(m, r) = min
m,r

N∑
n=1

K∑
k=1

r
(n)
k ∥mk − x(n)∥2 (1)

• K-means assignment:

k(n) = argmin
k

d(mk, x
(n)) (2)

• K-means update:

mk =

∑
n r

(n)
k x(n)∑
n r

(n)
k

(3)

• Soft K-means assignment:

r
(n)
k =

exp(−βd(mk, x
(n)))∑

j exp(−βd(mj , x(n)))
(4)

• Soft K-means update:

mk =

∑
n r

(n)
k x(n)∑
n r

(n)
k

(5)

B. PCA and Linear Autoencoder

• Covariance matrix:

C =
1

N

N∑
n=1

(x(n) − x̄)(x(n) − x̄)T (6)

• Project input vector:

zj = uT
j x; z = UT

1:Mx (7)

• Optimization:

J(u, z, b) =
∑
n

∥x(n) − x̃(n)∥2 (8)

where the reconstructed x̃(n) is given by:

x̃(n) =

M∑
j=1

z
(n)
j uj +

D∑
j=M+1

bjuj (9)

• Encoding and decoding:

z = f(Wx); x̂ = g(V z) (10)

• Optimization:

min
W,V

1

N

N∑
n=1

∥x(n) − x̂(n)∥2 (11)

• If g and f are linear, the objective simplifies to:

min
W,V

1

N

N∑
n=1

∥x(n) − VWx(n)∥2 (12)

III. PROBLEM FORMULATION

A. Dataset Description

This project utilizes the Wheat Seed Dataset, comprising
210 data samples. Each sample is described by seven input
features, indicative of the geometrical properties of wheat
seeds. The dataset also contains labels for three wheat va-
rieties: Kama, Rosa, and Canadian, marked as 1, 2, and 3
respectively. It is crucial to note that, although the labels are
provided, they are not employed in the K-means and Soft K-
means clustering methods. Instead, these labels serve as a basis
for evaluating the performance of the clustering algorithms.

Additionally, the project employs two distinct image types
to assess PCA and Linear AutoEncoder in dimensionality
reduction. The first is a painting, chosen for its artistic
complexity, to test the preservation of artistic features in
reduced dimensions. The second is a photograph, selected
for its realistic details, providing a contrasting scenario to
evaluate these techniques in preserving clarity and realism.
The inclusion of both images facilitates a comprehensive
analysis of dimensionality reduction methods.

B. K-means and Soft K-means Clustering

The project aims to apply both K-means and Soft K-means
clustering methods to the Wheat Seed Dataset. In clustering
analysis, the objective is to partition the dataset into groups
(or clusters) such that data points in the same cluster are more
similar to each other than to those in other clusters.

K-means, a partitional clustering technique, aims to min-
imize within-cluster variance by iteratively reassigning data
points to the nearest cluster centroid and recalculating these
centroids.

Soft K-means, an extension of K-means, assigns points to
clusters probabilistically, allowing for more nuanced clustering
by considering the likelihood of each point belonging to every
cluster.

For the initial experiment, we set the number of clusters,
K, to 3, reflecting the three varieties of wheat in the dataset.
The performance of the clustering methods is assessed without
using the label information. Additionally, we experiment with
a higher value of K (K=10) to explore the algorithms’ behavior
in a more complex clustering scenario. We also modify the
algorithms by incorporating non-local split-and-merge moves
and evaluate their impact.

C. Principal Component Analysis and Linear AutoEncoder

The project investigates dimensionality reduction through
Principal Component Analysis (PCA) and Linear AutoEn-
coder. PCA reorients data into principal components, retaining
those characteristics of the dataset that contribute most to
its variance. Linear AutoEncoder, utilizing neural networks,
compresses and reconstructs data, focusing on minimizing
reconstruction error to retain key features.

The project employs these dimensionality reduction tech-
niques on an image dataset and compares their effectiveness
in capturing the principal components. The reconstruction
quality of both methods is analyzed, and the Soft K-means

algorithm is applied for clustering, with K set to the number
of dimensions retained by the PCA.

IV. METHOD AND ALGORITHMS

A. K-means Clustering
K-means clustering is a method to partition N observations

into K clusters in which each observation belongs to the
cluster with the nearest mean. This results in a partitioning
of the data space into Voronoi cells.

1) Algorithm Description: The standard K-means algo-
rithm operates through the following iterative process:

i. Initialization: Choose K initial cluster centers (centroids)
either randomly or based on some heuristic.

ii. Assignment step: Assign each data point to the nearest
centroid. The ’nearest’ is typically determined by the
Euclidean distance, forming K partitions of the data.

iii. Update step: Recalculate the centroids as the mean
of all data points assigned to each cluster, effectively
minimizing the within-cluster variance.

iv. Repeat the assignment and update steps until the centroids
no longer change significantly, indicating that the clusters
have stabilized and the algorithm has converged.

Initial step is set K cluster means m1, . . . ,mK to random
values. Each data point x(n) is assigned to the nearest mean:

k(n) = argmin
k

d(mk, x
(n))

Adjust the model parameters, means are updated to match
the sample means of data points they are responsible for:

mk =

∑
n r

(n)
k x(n)∑
n r

(n)
k

The objective function for K-means clustering is defined as
the sum of squared distances between each data point and its
assigned cluster centroid, which K-means aims to minimize:

J =

K∑
k=1

∑
x∈Sk

||x− µk||2

where Sk is the set of data points assigned to cluster k and
µk is the centroid of cluster k.

2) Convergence: The standard K-means algorithm guaran-
tees convergence to a solution by iteratively reducing within-
cluster variance. However, this solution may correspond to a
local minimum of the objective function.

3) Optimized centroid initialization method: The algorithm
attempts to use the optimized centroid initialization method:
Randomly determine the first centroid, and loop to find the
centroid farthest from all current centroids. This method of
initialization based on distance effectively optimizes the
algorithm effect.

4) Non-local split and merge: To potentially improve the
convergence to a global minimum and avoid local minima,
non-local split and merge strategies can be employed. By
allowing clusters to split and merge, the algorithm can adapt
better to the inherent structure of the data and potentially find
a more optimal partitioning.

Algorithm 1 K-means Clustering Algorithm
Require: X , the dataset
Require: K, the number of clusters
Require: max iterations, the iteration maximum limit

Initialize centroids randomly the dataset X
// or initialize centroids by largest distance between them
for i = 0 to max iterations do

Assign each point in X to the nearest centroid
Recalculate centroids as the mean of all points assigned
to each centroid
if centroids do not change then

break
end if

end for

B. Soft K-means Clustering

Soft K-means clustering is a variant of the K-means al-
gorithm that allows for a probabilistic assignment of data
points to clusters, rather than a hard assignment. This method
provides a more flexible clustering approach by incorporating
the degree of membership for each data point in relation to
each cluster.

1) Algorithm Description: The Soft K-means algorithm
involves the following steps:

i. Initialization: Start by setting K means {mk} to random
values, or by the optimized centroid initialization method
based on distance.

ii. Assignment: Assign each data point x(n) a ”degree of as-
signment” to each cluster mean mk, reflecting the point’s
responsibility towards the cluster. The responsibility r

(n)
k

is calculated as follows:

r
(n)
k =

exp(−β · d(mk, x
(n)))∑

j exp(−β · d(mj , x(n)))

where d(·, ·) denotes a distance metric between two
points, typically the Euclidean distance, and β is a pa-
rameter controlling the ”softness” of the assignment.

iii. Update: Adjust the cluster means based on the responsi-
bilities and the data points:

mk =

∑
n r

(n)
k x(n)∑
n r

(n)
k

iv. Repeat the assignment and update steps until convergence
is achieved, indicated by minimal changes in responsibil-
ities or means.

2) Convergence: Similar to K-means, Soft K-means is an
iterative algorithm that converges to a set of means and
responsibilities that locally minimize the objective function.
However, due to the ”soft” assignment of points to clusters,
the algorithm may be more robust to the initial placement of
centroids and can potentially reveal overlapping clusters.

3) Responsibilities: The responsibilities r
(n)
k represent the

extent to which a data point x(n) is associated with a particular
cluster k. Unlike hard assignments, these responsibilities allow

for a data point to influence the position of multiple cluster
means.

4) Softness Parameter β: The parameter β controls the
”sharpness” of the cluster boundaries. A high value for β leads
to almost hard assignments (similar to standard K-means),
while a low value allows for more overlap between clusters,
capturing the data’s uncertainty and nuances.

Algorithm 2 Soft K-means Clustering Algorithm
Require: X , the dataset
Require: K, the number of clusters
Require: max iterations, the iteration maximum limit
Require: beta, the stiffness parameter

Initialize centroids from the dataset X
for i = 0 to max iterations do

for each point x(n) in X do
for each centroid mk do

Calculate d(mk, x
(n)) as the distance between x(n)

and mk

r
(n)
k ← exp(−beta · d(mk, x

(n)))
end for
Normalize r

(n)
k so that

∑
k r

(n)
k = 1

end for
for each centroid mk do

mk ←
∑

n r
(n)
k x(n)∑

n r
(n)
k

end for
if centroids do not change significantly then

break
end if

end for

C. Principal Component Analysis (PCA)
Principal Component Analysis (PCA) is a statistical pro-

cedure that uses an orthogonal transformation to convert a
set of observations of possibly correlated variables into a set
of values of linearly uncorrelated variables called principal
components.

1) Algorithm Description: The PCA algorithm can be sum-
marized as follows:

i. Covariance Matrix: Compute the covariance matrix C
of the data set as:

C =
1

N

N∑
n=1

(x(n) − x̄)(x(n) − x̄)T

where x̄ is the mean vector of the data points.
ii. Eigendecomposition: Perform eigendecomposition on

the covariance matrix C to obtain the matrix of eigen-
vectors U and the diagonal matrix of eigenvalues Σ:

C = UΣUT

where U has columns that are unit-length eigenvectors
and is orthogonal, meaning that UTU = UUT = I .

iii. Selection of Components: Select the top M eigenvectors
corresponding to the largest eigenvalues to capture most
of the variance in the data.

iv. Projection: Project the data onto the lower-dimensional
subspace spanned by the selected eigenvectors:

zj = uT
j x; z = UT

1:Mx

2) Minimizing Reconstruction Error: PCA can also be
viewed as a way to minimize the reconstruction error between
the data and its projection onto a lower-dimensional space:

J(u, z, b) =
∑
n

∥x(n) − x̃(n)∥2

where the reconstructed data point x̃(n) is given by:

x̃(n) =

M∑
j=1

z
(n)
j uj +

D∑
j=M+1

bjuj

The objective is minimized when the components chosen are
the eigenvectors associated with the largest eigenvalues, which
represent the directions of maximum variance in the data.

The principal components provide a means of understanding
the underlying structure of the data, capturing as much of the
data’s variability as possible, and reducing the dimensionality
without losing significant information.

Algorithm 3 Standard PCA Algorithm
Require: X , the dataset
Require: M , the number of principal components to select
Ensure: Z, the projected data; VM , the selected eigenvectors
µ← mean(X)
Xcentered ← X − µ
C ← 1

N × (XT
centered ×Xcentered)

[V,D]← eig(C)
Sort eigenvalues and eigenvectors in descending order
VM ← top M eigenvectors
Z ← Xcentered × VM

return Z, VM

D. Linear AutoEncoder
A Linear AutoEncoder is a type of neural network used for

learning a compressed representation of data. It consists of
two main components: an encoder and a decoder.

1) Encoder and Decoder: The encoder maps the input data
x into a lower-dimensional representation z, and the decoder
attempts to reconstruct the input data from this compressed
form x̂. Mathematically, the encoder and decoder functions
are defined as:

z = f(Wx) (13)
x̂ = g(Vz) (14)

where W and V are weight matrices for the encoder and
decoder, respectively.

2) Objective: The goal of the AutoEncoder is to minimize
the reconstruction error, which is the difference between the
original input x and the reconstructed input x̂. The reconstruc-
tion error for all N data points is given by:

min
W,V

1

2N

N∑
n=1

||x(n) − x̂(n)||2 (15)

3) Linear AutoEncoder: If the functions f and g are linear,
the AutoEncoder essentially performs the same operation
as PCA. The encoder becomes a linear transformation that
projects the data onto a lower-dimensional subspace, and the
decoder reconstructs the data from this subspace. The objective
simplifies to:

min
W,V

1

2N

N∑
n=1

||x(n) −VWx(n)||2 (16)

where W and V are now the projection matrix and the
reconstruction matrix, respectively.

4) Training: During training, the AutoEncoder learns the
optimal weights W and V that minimize the reconstruction
error. For a Linear AutoEncoder, this training process results
in learning the principal components of the data.

Algorithm 4 Linear AutoEncoder
Require: X , the input data matrix where each column is a

data point
Require: η, the learning rate
Require: epochs, the number of iterations for training

Initialize W and V with small random values or using a
specific initialization strategy
for epoch = 0 to epochs do

for each data point x(n) in X do
// Encoding step
z(n) ←Wx(n)

// Decoding step
x̂(n) ← V z(n)

// Calculate reconstruction error
error ← x(n) − x̂(n)

// Update the weights
d loss X ← 2

N · error
d loss Z ← d loss X ·W2
Wi ←W + η · d loss Wi

bi ← V + η · d loss bi
end for
// Optionally add a condition to break the loop if the error
is below a threshold

end for
return W2, b2,W1, b1

V. EXPERIMENT RESULTS AND ANALYSIS

A. K-means Implementation Testing and Analysis

In the implementation of the K-means class, we explored
several optimization methods:

Optimizing the method of initializing cluster centroids. We
created a largest distance method to calculate the point that
is farthest from the current list of centroids and chose this as
the next centroid, until the list of K centroids was completed.

The test results showed that this optimized initialization
method effectively avoided clustering errors when random
initialization could lead to inaccurate classifications.

Fig. 1. Optimized K-means clustering with improved initialization method.

To potentially improve convergence to the global minimum
and avoid local minima, non-local split and merge strategies
were employed. These strategies included splitting the largest
cluster into two based on certain calculated metrics and
merging the two closest clusters. Allowing clusters to split and
merge enabled the algorithm to better adapt to the inherent
structure of the data and potentially find a more optimized
partitioning.

Fig. 2. K-means clustering after non-local split and merge strategies.

B. Soft K-means Implementation Testing and Analysis

The optimization methods mentioned above were still ef-
fective in the implementation of the SoftKMeans class:

Fig. 3. Soft K-means clustering with different strategies.

Testing the impact of different Beta parameters on the
results showed that as the Beta value decreased, the cluster
assignments became ”softer,” and the clustering centers were
more likely to approach each other, resulting in a reduction

in the number of distinct clustering centers. A Beta value too
low might affect accuracy, while increasing Beta value made
the cluster assignments ”harder,” approaching the behavior of
the K-means algorithm.

Fig. 4. Soft K-means clustering with different Beta values.

In the above test, in order to compare the classification
results, hard assignment was used for the Soft KMeans class
during prediction. In order to better demonstrate the effect of
the responsibility matrix in the clustering process, responsi-
bility was also applied to visualization to better showcase the
effects of Soft KMeans. The test results are shown below:

Fig. 5. Visualization of the responsibility matrix in Soft K-means.

C. Clustering Test and Analysis on Wheat Seed Dataset

For the clustering test of the dataset, we constructed test
code and serialized the model test result outputs. We first set
K to 3 for clustering. We used the adjusted rand score tool
from the sklearn package to analyze prediction accuracy.

When we reconsidered the dataset and set K to 10,
we modified both algorithms by adding non-local split and
merge moves and then ran the modified algorithms. We
built a momentum parameter to assist the analysis. In
both the kmeans and softkmeans classes, the calculation of
momentum involved replacing the vector coordinates of
”point” in the center point calculation method with the Eu-
clidean distance to the center point.

Clustering Results:

TABLE I
CLUSTERING RESULTS FOR K-MEANS WITH k = 3

Initialization Split&Merge Accuracy Score Momentum-Sum

Random No 0.7166 313.2168

Random Yes 0.7166 313.2168

Optimization No 0.7103 313.7343

Optimization Yes 0.7166 313.2168

TABLE II
CLUSTERING RESULTS FOR SOFT K-MEANS WITH k = 3

Initialization Split&Merge Accuracy Score Momentum-Sum

Random No 0.6715 7.7976

Random Yes 0.6712 7.7882

Optimization No 0.6715 7.7976

Optimization Yes 0.6717 7.7646

It can be seen that when the number of k categories is
set appropriately (k = 3, the true value), the hard clustering
approach of KMeans tends to outperform Soft KMeans due to
more definitive assignments and less susceptibility to noise.

TABLE III
CLUSTERING RESULTS FOR K-MEANS WITH k = 10

Initialization Split&Merge Accuracy Score Momentum-Sum

Random No 0.3303 193.2378

Random Yes 0.3224 191.5293

Optimization No 0.3750 199.1581

Optimization Yes 0.3112 200.5471

TABLE IV
CLUSTERING RESULTS FOR SOFT K-MEANS WITH k = 10

Initialization Split&Merge Accuracy Score Momentum-Sum

Random No 0.6033 26.0271

Random Yes 0.6085 26.0117

Optimization No 0.6033 26.0269

Optimization Yes 0.6033 26.0266

However, when K is set higher than the actual number of
categories (k = 10), KMeans’ accuracy drops significantly due
to the addition of extra categories that do not actually exist,
while the effect of Soft KMeans is far better than KMeans.
This reflects the better adaptability and dynamic adjustment
ability of Soft KMeans’ soft assignment to the data point
structure.

Furthermore, we can observe that, with the inclusion of non-
local split and merge moves, both modified algorithms have
the potential for improvement. However, whether improvement
occurs is also influenced by random factors.

At the same time, it can be seen that the optimized
centroid initialization algorithm (selecting centroids based on
the furthest distance principle) can enhance the accuracy of
clustering.

D. Dimensionality Reduction Techniques on Image Data

1) PCA and Linear AutoEncoder Processing: In this ex-
periment, an image was processed to discard any transparency
channel and transform it into an N × 3 matrix representing
RGB values ranging from 0 to 255. Considering the intrinsic
nature of the algorithms, the maximum principal component
dimensionality for PCA and the Linear AutoEncoder was

limited to the channel number, which is three. We tested
dimensions n = 1, 2, 3 for both PCA and the Linear AutoEn-
coder.

The PCA and the Linear AutoEncoder yielded results that
can be visually compared in the following figures, demon-
strating the impact of different dimensionality choices on the
reconstructed image quality:

Fig. 6. Comparison of PCA and Linear AutoEncoder processing results with
different dimensions.

As the test image used in the above experiment was a work
of digital art with less detail in color blocks, a real photo-
graph was chosen for additional test. Moreover, attempt to
demonstrate the processing result when n = 0. Consistent with
the algorithmic prediction, both PCA and the AutoEncoder
processed the image to produce a monochromatic picture,
where the image’s color represents the mean of the original
photograph’s colors. The comparative observation is illustrated
in the figure below:

Fig. 7. Comparison of PCA and Linear AutoEncoder on a real photograph.

The training of the Linear AutoEncoder on a real pho-
tograph was conducted with different principal component
dimensions n = 1, 2, 3. The corresponding loss curves for
each dimension setting are depicted in Figure 8. As seen, the
loss sharply decreases in the initial epochs, indicating a rapid
learning phase, followed by a plateau, suggesting convergence.
The difference in the scale of loss values across different

dimensions emphasizes the variation in reconstruction error,
with n = 3 having the most significant initial loss reduction,
indicative of capturing more complex features in higher di-
mensions.

Fig. 8. Loss curves of the Linear AutoEncoder for n = 1, 2, 3 when applied
to a real photograph, showing the training progression over epochs.

2) Clustering Results with Soft KMeans: Utilizing Soft
KMeans, we matched the clustering k values to the principal
component dimensions used in PCA. The clustering results
are depicted below, showing the effect of color compression
in the images:

Fig. 9. Clustering results with k = 1, 2, 3 corresponding to PCA dimensions.

Given that PCA and Soft KMeans have different processing
effects for n ≥ 3 and k ≥ 3, an additional set of images with
larger k values was analyzed to observe the variation in the
number of color values:

Fig. 10. Clustering results using Soft KMeans with larger k values.

Testing with a real photograph revealed more pronounced
noise after clustering. The effect of color compression is
significantly more observable:

Fig. 11. Clustering results with k = 1, 2, 3 corresponding to PCA dimensions
on a real photograph.

VI. CONCLUSION AND FUTURE PROBLEMS

This study provided a comparative analysis of clustering
and dimensionality reduction techniques, revealing distinct
characteristics and performance metrics across various algo-
rithmic implementations. K-means exhibited robust clustering
capabilities with definitive assignments, while Soft K-means
demonstrated flexibility in handling data points. Dimension-
ality reduction techniques, PCA and Linear AutoEncoder,
proved their efficacy in image data compression while main-
taining the integrity of the original data to a commendable
extent.

Future research may delve into hybrid models that combine
the strengths of these algorithms, potentially enhancing perfor-
mance. Additionally, exploring the integration of deep learning
models for unsupervised tasks could offer new perspectives
in clustering and dimensionality reduction. Lastly, extending
these techniques to other complex data types such as time
series or genomic data could further validate their versatility
and applicability in broader data science contexts.

REFERENCES

[1] Bishop, C. M. (2006). Pattern Recognition and Machine Learning.
Springer.

