
EKF Estimation for the Biped Robot and
Examination for Reinforcement Learning

- SDM366 Report for Final Project -

July 4, 2024

Zhiling Li Jinda Dong Zixuan Zhong
Department of System Design
and Intelligent Manufacturing

Department of System Design
and Intelligent Manufacturing

Department of System Design
and Intelligent Manufacturing

Shenzhen, China Shenzhen, China Shenzhen, China
12112748@mail.sustech.edu.cn 12111829@mail.sustech.edu.cn 12112707@mail.sustech.edu.cn

1 Biped Robot State Estimation
In the first project, we need to deploy an Extended Kalman filter algorithm[1] that uses information
from the motor and IMU to predict the body speed of the biped robot.

1.1 State Space Model of a biped robot
1.1.1 Filter State Definition

First, we need to define the state variable. According to the description of the paper[2], the state
variables of the robot are defined as:

0P com ∈ R3, 0V com ∈ R3, 0P l ∈ R3, 0P r ∈ R3 (1)

The variables above represent: the position of the robot’s center of mass in the world coordinates, the
velocity of the robot’s center of mass in the world coordinates, the position of the robot’s left foot in the
world coordinates, and the position of the robot’s right foot in the world coordinate, sequentially.

The state of the robot is defined as x:

x := (0P com, 0V com, 0P l,
0P r) ∈ R12 (2)

1.1.2 Prediction Model

In the process of moving forward, we first need to determine the relationship between the global position
and speed of the robot. In the case of discrete time, if the time interval is δt, then the position at the
next time is:

0P com(t + δt) = 0P com(t) + 0V com(t)δt (3)

We can get the acceleration of the robot in body coordinates from the IMU:

1

https://orcid.org/0009-0008-3828-9811
https://orcid.org/0009-0004-8114-5814
https://orcid.org/0000-0000-0000-0000

0V com(t + δt) = 0V com(t) + 0
a(t)δt (4)

where 0a(t) is the acceleration term on the robot in the global coordinate. It can be measured with
gravity acceleration, IMU acceleration, and rotation matrix from global to body coordinate:

0a(t) = 0
BR(t)(Ba(t) + g(t)) (5)

In equation (5), 0
BR(t) is the rotation matrix from global coordinate to body coordinate. Ba(t) is the

body acceleration which got from IMU, and g(t) is the gravity acceleration.

For the feet’ position in the global coordinate, we only use the leg, which stands on the ground, to do
the estimation. In this case, let the tiptoe motionless:

0P l(t + δt) = 0P l(t) (6)

0P r(t + δt) = 0P r(t) (7)

According to equation(3)-equation(7), we can rewrite these equations to matrix form as prediction state:

x(t + δt) = Ax(t) + Bu(t) (8)

A =

I3 I3δt 03 03
03 I3 03 03
03 03 I3 03
03 03 03 I3

 , B =

I3

I3δt
03
03

 , u(t) = 0a(t) (9)

1.1.3 Observation Model

Then, we need to use the information from the motor position and velocity to observe the body position.
Firstly, we can use the feet’ position under global coordinates and the motor’s position to calculate the
body’s position under global coordinates. According to the coordinates transfer equation:

0P l(t) = 0P com(t) + 0
BR(t) BP l(t) (10)

Rewrite it in observation form:

− 0
BR(t) BP l(t) = 0P com(t) − 0P l(t) (11)

Similarly, the right foot can measure too:

− 0
BR(t) BP r(t) = 0P com(t) − 0P r(t) (12)

We also know the velocity of the motors, which can be used to observe the velocity of the body. Derive
the equation(10):

0V l(t) = 0V com(t) + ˙0
BR(t) BP l(t) + 0

BR BV l(t) (13)

2

The robot foot stands on the ground, which means 0V l equals to zero, and rewrite the equation as the
observation form:

− 0
BR(t)(0ωB(t) × BP l(t) + BV l(t)) = 0V com(t) (14)

There is the same equation on the right foot:

− 0
BR(t)(0ωB(t) × BP r(t) + BV r(t)) = 0V com(t) (15)

In the equation above, 0ωB(t) stands for the angular velocity of the body in terms of global coordinates,
BP l(t) stands for the position of the left foot under body coordinate, and BV l(t)) stands for velocity of
the left foot under body coordinate.

Lastly, if the foot is on the ground, we can easily get that the height of the foot position, the third term
in 0P l(t) and 0P r(t) are constant:

[
0 0 1

] 0P l(t) =
[
0 0 1

] 0P r(t) = h (16)

And we can get h from robot URDF file:

h = 0.037062 (17)

Combining the equation(10)-equation(17), we write it in matrix form:

z(t) = Hx(t) (18)

z(t) =

− 0
BR BP l

− 0
BR BP l

− 0
BR(0ωB

BP l + ˙BP l)
− 0

BR(0ωB
BP r + ˙BP r)
h
h

(19)

H =

I3 03 −I3 03
I3 03 03 −I3
03 I3 03 03
03 I3 03 03

01x3 01x3
[
0 0 1

]
01x3

01x3 01x3 01x3
[
0 0 1

]

 (20)

1.2 Implement EKF as State Estimator
We have established the motion model and observation model of the robot. And now, we can implement
the Extended Kalman Filter to estimate the body velocity.

prediction step
x̂(t) = Ax(t) + Bu(t) (21)
ˆP (t) = AP (t)A⊤ + Q(t) (22)

3

observation step
K(t) = P̂ (t)H⊤(HP̂ (t)H⊤ + R(t))−1 (23)
x(t + δt) = x̂(t) + K(t)(z(t) − Hx̂(t)) (24)

P (t + δt) = (I − K(t)H)P̂ (t) (25)

It is worth mentioning that both the motion model and the observation model here are based on the
assumption that the foot is standing on the ground. When this assumption is satisfied, we can use the
above model to predict the current body speed. But when a foot is off the ground, we give a large value
to the variance of the corresponding terms of the Q and R matrices. In this case, the foot on the ground
will have a slight effect on estimating velocity, while the model will tend to use the foot on the ground
to do estimation.

1.3 Experiment Result and Extras
1.3.1 Experiment Results

Since the foot has a certain speed in the world coordinate system when it just lands and is about to
lift up, the observation of the body speed is inaccurate. Therefore, in practice, we focus on using IMU
information for measurement, which means the Q matrix is smaller than the R matrix.

Q(t) = diag(I3δt, 9.8I3δt, I3δt ∗ noiseQl, I3δt ∗ noiseQr) (26)

R(t) = diag(I6 ∗ noisepfoot, I6 ∗ noisevfoot, I1 ∗ noiseRl, I1 ∗ noiseRr) (27)

In the equations above, to make the IMU measurement more credible, we take the noiseQl, noiseQr <
noiseRl, noiseRr.

Here are the experiment results of different Q and R matrix. With all figures shows below, yellow line
stands for the real body velocity under global coordinate, while the blue line stands for estimate velocity
under global coordinate. The figures demonstrate the x-velocity, y-velocity, z-velocity, and error among
velocities, from top left, top right, bottom left, bottom right, sequentially.

(a) noiseR = 1e5 ∗ noiseQ (b) noiseR = 1e7 ∗ noiseQ (c) noiseR = 1e10 ∗ noiseQ

Figure 1: Comparison of Measurements with Different Noise Levels

We can see that with R gets larger, the error of the estimate gets smaller, and the predicted speed gets
closer to the real speed.

This is due to the fact that estimation step requires information about the robot’s foot contact with the
ground compared to prediction step. However, in this simulation, the information of the robot’s foot
touching the ground is only 1 and 0, and there is no strength information. The speed of the motor is
not accurate between the time when the robot is about to lift its feet and the time when it just lands,

4

but since the legs have already landed, this inaccurate information will be used to estimate the speed of
the body. In addition, the estimation step has large noise compared to prediction step, so the error gets
smaller with R gets larger.

This trend has not always held true. Since the IMU information of the prediction step itself has errors,
the total error of the system will gradually increase with the increase of time, that is, the predicted
position will become more and more inaccurate with the real position. The velocity of the system
divergence mainly depends on the size of the IMU noise and the value of the Q&R matrix.

In the above experiments, the robot could walk normally at the beginning, but when the distance
gradually increased and the prediction of speed and position was no longer accurate, the robot’s posture
gradually deformed and eventually fell to the ground. In the experiment, the distance traveled by the
robot is inversely proportional to the error of speed prediction. The smaller the error, the farther the
robot will go. In the above three experiments, the robot went the closest in the first experiment, and
the robot went the farthest in the third experiment, which also proves this conclusion.

1.3.2 Extra

There is a bug in the demo, that is, the time steps of the predicted results do not match. In the source
code you want to take an action after each self.decimation time step. However, the measurement
step is also incorrectly written in the judgment of self.decimation, that is, the measurement will also
be performed after the self.decimation time step. Therefore, if this measurement is followed, the
actual time step of the measurement needs to be changed to the self.decimation of the defined time
step. Another solution is to remove this line of code from the self.decimation judgment.

while self.data.time < 5.0 and self.viewer.is_running():
step_start = time.time()
proprioception_obs = self.compute_obs() # correct position
if self.iter_ % self.decimation == 0:

proprioception_obs = self.compute_obs() # wrong position

Another thing is that, given the simplicity of directly using the pinocchio library to calculate the forward
kinematics, we hand-modeled the DH table using our knowledge of the robot arm kinematics and the
robot URDF file. After testing, the position can also be predicted using our DHtable, but due to the
large number of design matrices during calculation and the calculation is time-consuming, it is still
recommended to use the pinocchio library.

You could set withPinocchio term in the code to False to check the difference.

5

2 Reinforcement Learning in Inverted Pendulum
2.1 Problem Formulation
This project involves the application of Reinforcement Learning (RL) to control inverted pendulum
systems. The inverted pendulum is a classic problem in control theory and robotics, characterized by its
inherent instability and requirement for continuous balancing. The project is divided into two main
tasks: controlling a single inverted pendulum and a double inverted pendulum.

2.1.1 Single Inverted Pendulum

The single inverted pendulum consists of a rod pivoted at one end and a cart that can move horizontally.
The objective is to control the movement of the cart to keep the pendulum balanced in the upright
position.

In task 1a: Upright Stabilization, the pendulum starts with a slight inclination from the upright
position. The goal is to stabilize the pendulum by controlling the cart’s motion. This involves applying
forces to the cart to counteract the pendulum’s tendency to fall.

In task 1b: Swing-up and Stabilization, the pendulum starts from the downward position. The
objective is to swing the pendulum up and stabilize it in the upright position. This requires a more
complex control strategy as the pendulum needs to gain sufficient momentum to reach the upright
position and then be stabilized.

θ

F

x
ẋ

θ̇

Figure 2: Block diagram of the single inverted pendulum system. The diagram shows the cart, the
pendulum rod, and the forces applied to control the system.

2.1.2 Double Inverted Pendulum (Bonus)

The double inverted pendulum consists of two rods connected end-to-end, creating a system with higher
degrees of freedom and more complex dynamics. The goal is to swing and stabilize the double
pendulum from a downward initial position to an upright position.

The objective is to control the movement of the cart to swing both rods up and maintain them in a
given state. The increased complexity of the double pendulum system makes this task more challenging
due to its non-linear dynamics and the need to coordinate the motion of both rods.

2.1.3 Objective and Challenges

The primary objective for both single and double inverted pendulums is to develop RL-based control
policies that can achieve stable balancing. The challenges include:

• Defining appropriate state and action spaces.

• Designing a reward function that encourages stable balancing.

• Selecting and implementing effective RL algorithms.

6

θ1

θ2

F

x
ẋ

θ̇1

θ̇2

Figure 3: Block diagram of the double inverted pendulum system. The diagram shows the cart, the
pendulum rods, and the forces applied to control the system.

• Training the RL agent to handle the non-linear dynamics of the pendulum systems.

To solve these tasks, the following steps are necessary:

1. State and Action Spaces: Define the observations and actions for the RL agent. For the inverted
pendulum, the state typically includes the angle and angular velocity of the pendulum and the
position and velocity of the cart. The action space involves the forces applied to the cart.

2. Reward Function Design: Design a reward function that provides positive feedback for actions
that lead to stable balancing and penalizes actions that lead to instability.

3. Algorithm Selection: Choose suitable RL algorithms such as PPO, DDPG, A2C or others to
train the control policies.

4. Training Procedure: Implement the RL algorithms and train the agent using simulations of the
inverted pendulum systems.

5. Evaluation and Tuning: Evaluate the performance of the trained policies and fine-tune the
parameters to improve stability and robustness.

2.1.4 State and Action Spaces Description

In reinforcement learning (RL), defining the state and action spaces is critical for the agent to learn
and perform the required tasks effectively. The state space provides the RL agent with the necessary
information about the environment, while the action space defines the set of possible actions the agent
can take.

For the inverted pendulum systems, the state and action spaces are defined as follows:

Single Inverted Pendulum For the single inverted pendulum, the state space typically includes:

• Cart Position (x): The horizontal position of the cart.

• Pendulum Angle (θ): The angle of the pendulum from the vertical position.

• Cart Velocity (ẋ): The velocity of the cart.

• Pendulum Angular Velocity (θ̇): The angular velocity of the pendulum.

These state variables provide a comprehensive description of the system’s dynamics, allowing the RL
agent to make informed decisions.

7

The action space for the single inverted pendulum is Box(-3.0, 3.0, (1,), float32), and usually
consists of:

• Force (F): The horizontal force applied to the cart. This force can be positive or negative,
corresponding to pushing the cart to the right or left.

Double Inverted Pendulum (Bonus) For the double inverted pendulum, the state space is more
complex due to the additional degree of freedom. The state space includes:

• Cart Position (x): The horizontal position of the cart.

• Cart Velocity (ẋ): The velocity of the cart.

• First Pendulum Angle (θ1): The angle of the first pendulum from the vertical position.

• First Pendulum Angular Velocity (θ̇1): The angular velocity of the first pendulum.

• Second Pendulum Angle (θ2): The angle of the second pendulum from the vertical position.

• Second Pendulum Angular Velocity (θ̇2): The angular velocity of the second pendulum.

Additionally, we add two dims of observation, the sin and cos values of each θ, to better observe the
state. Next, the action space for the double inverted pendulum is Box(-1.0, 1.0, (1,), float32),
and also consists of:

• Force (F): The horizontal force applied to the cart. This force controls the movement of both
pendulums indirectly through the cart’s motion.

Defining these state and action spaces accurately is essential for the RL agent to learn effective control
policies. These spaces capture the system’s dynamics and provide the necessary feedback for the agent
to optimize its actions and achieve stable balancing.

2.2 Reinforcement Learning Approach
In classic reinforcement learning, the environment is formulated as a Markov decision process described
by the tuple (S, A, p, r, γ) with S to be the state space, A to be the action space, p to be the state
transition probability, r to be the obtained reward and γ to be the discount factor [3]. The process of
the Markov is shown in (28), where Pss′ is the state transition probability matrix.

Pss′ = P [St+1 = s′|St = s] (28)

The Bellman equation reveals the recursive relationship between cost function and strategy in rein-
forcement learning [4], described as (29), where π(s) represents the probability distribution in state s
choosing strategy a, and R(s, a) stands for the current reward, s′ is the new state add γ is the discount
factor.

V (s) = Ea π(s)[R(s, a) + γV (s′)] (29)

In order to find the policy π(a|s) = P [At = a|St = s] that can maximize the reward, we follow the
basic MDP (Markov Decision Process) process [5] to implement the reinforcement learning in our model.
Q-learning is a model-free method widely used in solving the MDP problems in reinforcement learning
[6], using the state-action value function (Q function). We follow the Q-learning method to choose
strategies that can maximize the final reward in (30) to calculate the expected rewards Q in a given
state s to s′ corresponds to taking the action a. Here α is the learning rate, a hyper-parameter.

Qnew(s, a) =(1 − α)Q(s, a)
+ α(R(s′, a) + γ max Q(s′, a))

(30)

8

2.3 Training Methods
2.3.1 Algorithm Selection and ‘Throw-Catch’ Method

In this project, we tested various reinforcement learning algorithms to train the control policies for the
inverted pendulum systems. The algorithms can be grouped based on their suitability for discrete or
continuous action spaces, with PILCO being a special case due to its unique approach.

Algorithms for Discrete Action Spaces

• Deep Q-Network (DQN): DQN approximates the Q-values using a neural network, employing
experience replay and target networks for stability. It is effective for discrete action spaces and
well-studied. However, DQN is not directly applicable to continuous action spaces and may require
discretization of the action space. Therefore, it is less suitable for our continuous-time environment
without significant modifications.

For algorithms for discrete action spaces, Deep Q-Network (DQN) is specifically designed, where the
Q-values are approximated using a neural network. To apply DQN in a continuous action space, we
discretized the action space and assigned discrete values to approximate continuous actions.

While this approach allowed us to use DQN for our experiments, we observed that the performance was
suboptimal. Specifically, during the stabilization process, the control exhibited noticeable oscillations and
instability. This is because the discretized actions cannot capture the precise control needed for smooth
operation in continuous environments, leading to less effective performance compared to algorithms
natively designed for continuous action spaces.

Algorithms for Continuous Action Spaces

• Advantage Actor-Critic (A2C): A2C is a synchronous version of the Actor-Critic method,
where the actor updates the policy, and the critic estimates the value function. The advantage
function helps to reduce variance and stabilize training. A2C is simple to implement and stable
in training, making it suitable for continuous action spaces. However, synchronous updates can
be slower compared to asynchronous methods. It is well-suited for continuous-time environments
without the need for action space modification.

• Asynchronous Advantage Actor-Critic (A3C): A3C runs multiple instances of the environ-
ment in parallel with separate actors, which asynchronously update the global policy and value
function. This approach allows for better exploration and faster learning, making it effective for
large-scale problems. However, it has a more complex implementation and higher computational
requirements. A3C is effective for continuous-time environments without needing action space
modifications.

• Deep Deterministic Policy Gradient (DDPG): DDPG combines the actor-critic architecture
with deterministic policy gradients, using experience replay and target networks to stabilize training.
It handles continuous action spaces well and is efficient in learning through experience replay.
However, DDPG can be sensitive to hyperparameters and may require careful tuning. It is highly
suitable for continuous-time environments with continuous action spaces.

• Proximal Policy Optimization (PPO): PPO uses a clipped objective function to prevent
large policy updates, improving training stability and efficiency. It is robust, high-performing, and
simpler than TRPO. While it requires on-policy updates, which can be less data-efficient, it is
well-suited for continuous-time environments and works well with continuous action spaces.

For algorithms with continuous action spaces, A2C, DDPG, and PPO demonstrated effective control
performance. However, each algorithm showed different strengths and weaknesses depending on the
specific tasks in ‘throw-catch’ process.

In our project, we transformed the ‘swing-up’ task into a ‘throw-catch’ process using two agents
working in collaboration. Each agent was responsible for a different subtask. We tested various models

9

and hyperparameters under the same reward function to evaluate their performance.

The results indicated that different algorithms excelled in different sub-tasks. For instance, DDPG
provided smooth control for the initial throw phase, while PPO excelled in the catch phase due to its
robust policy updates. By systematically comparing the performance of each algorithm, we selected the
most suitable agent for each subtask, ensuring optimal overall performance for the throw-catch model.

Special Algorithm

• Probabilistic Inference for Learning Control (PILCO): PILCO uses Gaussian processes
to model the system dynamics and performs probabilistic inference to optimize the policy,
achieving high data efficiency. It is highly data-efficient and effective with limited training data.
However, PILCO is computationally intensive and has a complex implementation, for we have
to simulate relatively precise model, or we have to use supervised learning method to reflect the
relationship between the current input and the corresponding output state.Generally, it is suitable
for continuous-time environments and handles continuous action spaces well.

All of the algorithm are implemented manually by ourselves based on pytorch, including a lot
of parameter adjustment and trial and error links.

Traditionally, a model-free training process for reinforcement learning can be described in Fig. 4a. To
improve performance in the continuous domain, the actor-critic method has been proven to be highly
efficient and low-cost as one of the model-free algorithms in reinforcement learning.[7] Based on the
actor-critic model, several models have been tried by us, including the A2C, A3C, DDPG, etc.

Reward

State

Action

Simulation

ENV

Agent

(a) Reinforcement learning.

Designed

Reward

State

Action

Critic Actor
Simulation

ENV

(b) Actor-Critic algorithm.

Figure 4: Flow chart for the reinforcement learning framework and the actor-critic algorithm. (a)
Reinforcement Learning Framework: This diagram shows the reinforcement learning process where
the agent interacts with the environment. The agent receives the current state St and selects an action
At. The environment returns a new state St+1 and a reward Rt+1. This feedback loop continues,
allowing the agent to learn optimal actions over time. (b) Actor-Critic Algorithm: This diagram
illustrates the actor-critic algorithm. The actor selects actions based on the current state, while the
critic evaluates these actions by estimating future rewards. The critic’s feedback helps the actor adjust
its policy for better performance. The agent interacts with the environment iteratively, refining its
actions through this dual-component system.

10

2.4 Strategies
In this section, we will discuss the various strategies employed in our project to achieve optimal
performance in controlling the inverted pendulum systems. These strategies include the creation of
a custom RL agents toolkit, the implementation of a collaborative model for the swing-up task, and
the design of effective methods for unwrapping, initializing the starting state, and defining episode end
conditions. By detailing these strategies, we aim to provide a comprehensive overview of the techniques
and methodologies that contributed to the success of our project.

2.4.1 Swing-Up Task and Stabilizing Task

To tackle the challenging swing-up task, we implemented a collaborative ‘throw-catch’ process using
two agents working in coordination. In this model, the first agent (the thrower) is responsible for
generating the required state and swinging the pendulum up to the high at a certain velocity within the
constraints. The second agent (the catcher) takes over to stabilize the pendulum in the upright position.
This approach allowed us to decompose the complex task into manageable sub-tasks, each handled by a
specialized agent.

Figure 5: Throw-catch method for swing-up task.

The thrower agent was trained to maximize the probability of swing-up high, ensuring that the pendulum

11

gained sufficient height and maintained relative stationarity. Various reinforcement learning algorithms,
such as DDPG and PPO, were tested to determine the most effective approach for this phase. The
catcher agent, on the other hand, focused on stabilizing the pendulum once it reached the upright
position. We found that algorithms with robust policy updates, such as PPO, performed exceptionally
well in maintaining stability during this critical phase.

By systematically testing different models and hyperparameters, we were able to fine-tune each agent’s
performance. The collaborative effort between the two agents resulted in a successful swing-up and
stabilization process, demonstrating the effectiveness of the method in handling complex dynamic tasks.

2.4.2 Agents Toolkit Preparation and Design

In this project, we developed a custom RL agents toolkit instead of using existing libraries. This allowed
us to have full control over the implementation and fine-tuning of various RL models. The toolkit
includes the following components:

First, we implemented several agent classes for different RL algorithms such as DDPG, A2C, and DQN.
Each agent class includes the necessary methods for initialization, model loading and saving, resetting,
updating, and predicting actions. The initialization method sets up the neural network architecture,
optimizers, and any other necessary parameters. Methods to load pre-trained models and save the
current state of the model for future use were also included. The reset method resets the agent’s internal
state and environment to start a new episode. The update method applies the RL algorithm’s update
rules to train the model based on observed data. Finally, the predict method generates actions based
on the current state of the environment using the trained model.

Agent classes for different RL algorithms
class A2CAgent # Or other RL algorithms

def __init__(self, obs_space_dims, action_space_dims, lr, gamma):
Initialize neural networks, optimizers, parameters
pass

def load_model(self, path):
pass

def save_model(self, path):
pass

def update(self, rewards, log_probs, states):
Update model based on observed data
pass

def sample_action(self, state):
Generate actions based on current state
pass

For each agent, we developed corresponding network classes. These classes define the architecture of
the neural networks used by the agents, such as policy networks, value networks, and Q-networks. The
network classes also include methods for forward propagation and loss computation.

Network classes for defining neural network architectures
class PolicyNetwork:

def __init__(self):
Define policy network architecture
pass

12

def forward(self, x):
Forward propagation
pass

class ValueNetwork:

class QNetwork:

And other classes

We created functions to handle data observations from the environment. These functions preprocess the
raw data, normalize it if necessary, and format it into a suitable shape for the neural networks.

Data observation functions
def get_obs(raw_data):

Preprocess and normalize raw data
pass

Functions to initialize the Mujoco environment were also developed. These functions include setting up
the simulation parameters, loading the model, and configuring the environment for interaction with the
agents.

Mujoco initialization functions
def init_mujoco(path):

Set up simulation parameters and load model
pass

Additionally, we implemented functions to record training data, such as rewards, losses, and episode
lengths. These functions help in tracking the training progress and analyzing the performance of the
agents.

Finally, visualization tools were developed to plot training metrics, such as reward curves, loss curves,
and other relevant performance indicators. These tools are crucial for monitoring the training process
and identifying any issues or areas for improvement.

The custom toolkit provided us with the flexibility to experiment with different RL algorithms and tailor
them to the specific requirements of our project.

2.4.3 Starting State

The starting State varies in single or double inverted pendulum, thrower agent or catcher agent
situations:

Single Inverted Pendulum: For the thrower agent, after resetting, all observations start in the state
(0.0, 0.0, 0.0, 0.0) with a uniform noise in the range of [-0.1, 0.1] added to the positional values (cart
position and pole angles) and standard normal force with a standard deviation of 0.1 added to the
velocity values for stochasticity. After resetting and adding noise, the theta will be subtracted by np.pi
to simulate the slumping state. For the catcher agent, after resetting data, all states are changed. A
random number is generated for each value within the respective limits to mimic the range of reception
that the agent needs to undertake, such as position, angle, velocity, angular velocity, etc.

Double Inverted Pendulum: Similarly to the single-bar inverted pendulum, for models that take on
different tasks, a reset is performed, followed by a random initialization over a range of different settings.
During this initialization, a random seed can be specified.

13

2.4.4 Episode End

In reinforcement learning, defining the episode’s end conditions is crucial for the training process. An
episode ends when certain criteria are met, and these criteria can significantly impact the learning
efficiency and effectiveness. For the inverted pendulum systems, we established specific conditions to
mark the end of an episode:

First, for the stabling task, an episode ends if the pendulum falls beyond a certain angle threshold
from the vertical position. This prevents the agent from continuing to make futile attempts at recovery
when the pendulum is too far off balance, thus focusing the learning on more likely successful scenarios.

Second, an episode might be ended if the cart reaches the boundary of the track. The inverted pendulum
operates on a finite track, and reaching the boundary indicates that the agent needs to learn to stabilize
the pendulum without excessive horizontal movement.

Third, we introduced a maximum time step limit for each episode. This ensures that the agent’s training
is not dominated by a few long episodes but instead by many shorter, diverse attempts. This time-step
limit helps maintain a balance between exploration and exploitation, allowing the agent to experience a
variety of states and actions within a controlled timeframe.

These episode end conditions are designed to provide meaningful feedback to the agent, encouraging
learning strategies that maintain the pendulum’s balance and control within the given constraints.
By clearly defining the end of an episode, we ensure that the agent receives consistent and relevant
experiences, leading to more stable and effective learning outcomes.

2.4.5 Unwrapping

In particular, in order to allow the model to rotate freely, we introduced customized models and
environments, and in order to unwrap the angles, we defined an extended observation space, adding
sine-cosine quantities for each angle in order to compute the value of the angle over the course of a week,
which is used to compute the rewards correctly.

Figure 6: Unwrap the spiral angles.

2.5 Results and Discussion
2.5.1 Single Inverted Pendulum

To complete the tasks, we tried to divide the tasks into sub-tasks.

In fact, swing up the pendulum and then keep balance is really a hard task, so we divide the task
into 2 parts: the swing-up task and stabilizing task. In the swing-up task, our goal is to swing up
the pendulum; and another task is to keep balance of the pendulum. Hence, in the swing-up task, we

14

only need to swing it up, and try to make it less unstable when it reaches its peak, and the apply the
stabilizing task to keep balance.

In the training process of the swing-up task, we divide the task into to part: the first task is to swing
the pendulum as high as it can, and the second one is to lower the speed when reaching the highest
point. We define 2 reward functions for the whole swing-up task, and the change of the reward is shown
in Fig. 7.

And for the stabilization task, because in the swing-up task, the pendulum often reaches the top with a
relatively high velocity, to achieve better performance, we increased the initial condition noise in the
stabilization inverted pendulum training task. However, directly adopting high noise levels for training
might not yield perfect fitting results for the inverted pendulum due to the excessive noise. Therefore, we
divided the task into three sub-tasks, progressively increasing the training noise. The initial conditions
for the three tasks are provided in the first three rows of Table. 4, all using the same reward function.
The total training comprises 50,000 episodes, with each episode simulating up to a maximum of 15
seconds. The relationship between the reward function and the training episodes is shown in Fig. 7.

0 20 40 60 80 100 120
Episode

−7000

−6500

−6000

−5500

−5000

−4500

−4000

To
ta
l R

ew
ar
d

Total Reward with Episode

(a)

0 10 20 30 40 50 60 70 80
Episode

−8000

−7000

−6000

−5000

−4000

−3000

−2000

−1000

To
ta
l R

ew
ar
d

Total Reward with Episode

(b)

0 5 10 15 20 25 30
Episode

−2500

−2250

−2000

−1750

−1500

−1250

−1000

−750

To
ta
l R

ew
ar
d

Total Reward with Episode

(c)

0 500 1000 1500 2000 2500 3000 3500
Episode

0

100

200

300

400

500

600

To
ta
l R

ew
ar
d

Total Reward with Episode

(d)

0 200 400 600 800 1000 1200 1400 1600
Episode

0

50

100

150

200

250

300

350

To
ta
l R

ew
ar
d

Total Reward with Episode

(e)

0 500 1000 1500 2000 2500
Episode

0

200

400

600

800

1000

To
ta
l R

ew
ar
d

Total Reward with Episode

(f)

0 25 50 75 100 125 150 175 200
Episode

700

750

800

850

900

950
To
ta
l R

ew
ar
d

Total Reward with Episode

(g)

Figure 7: Rewards for inverted pendulum swing-Up and stabilization tasks. The first row illustrates
the reward function variations during the swing-up task. Figure (a) shows the trend of the reward
function over the initial 120 training episodes for the swing-up task. Figure (b) presents the reward
function trend over the subsequent 80 training episodes for the swing-up task. Figure (c) displays the
reward function trend after modifying the reward function to reduce the speed at which the pendulum
reaches the highest point. The second row, from left to right, depicts the reward function variations
during the stabilization task training. Figure (d) shows the reward function trend at the beginning of
the stabilization task training. Figure (e) and Figure (f) illustrate the reward function trends during
the intermediate stages of the stabilization task training. Figure (g) presents the reward function trend
towards the end of the stabilization task training.

Task 1a: Upright Stabilization Results Using the A2C method, our inverted pendulum was
successfully stabilized and remained predominantly centered on the rod. For each episode, the agent we
trained using the algorithmic class we wrote ourselves was able to control the pendulum to be almost
motionless and not fall over.

Additionally, we finished the task by testing the DQN method and PPO agent. As mentioned before,

15

the action output from the DQN method is affected by the frame rate and produces some jitter, while
the PPO training time is rapid and effective.

Task 1b: Swing-up and Stabilization Results Using the DDPG algorithm, we successfully swung
the inverted pendulum from a stationary position to the top. Subsequently, we applied our stabilization
model, achieving a transition from swing-up to stabilization in under 5 seconds.

We conducted 20 tests of the inverted pendulum swing-up from a stationary state, with a simulation
time of 10 seconds. In each test, the pendulum successfully swung up and stabilized with a success
rate of 100%. Additionally, we introduced some noise to the pendulum, with noise parameters detailed
in Table 1. Under these conditions, 18 out of 20 tests successfully stabilized, achieving a success rate
of 90%. When we elongate the simulation time to 30 seconds, the swing-up success rate under noisy
conditions reached 100%.

We provide videos for the task.

Table 1: Noise for the swing-up process.

x θ ẋ θ̇

U(-0.5,0.5) U(-π,π) U(-2.0,2.0) U(-2.0,2.0)

2.5.2 Double Inverted Pendulum (Bonus)

Although the model-free reinforcement learning shows a good adaptability for solving simple problems, for
the inverted double pendulum which is an underactuated system with deterministic chaotic behavior[8],
it is not easy to perform well when applying simple models. Aiming to better the performance of the
model, we try to apply model-based reinforcement learning, to better the performance of the swing-up
task.

The same as the inverted pendulum, we divide the whole task into swing-up task and stabilization task.
We use A2C for stabilization, and DDPG for swing-up. The training results are shown in Fig. 8.

Swing-up and Stabilization Results

2.6 Conclusion
Both of the basic tasks are finished successfully, and perform extremely well. And for the inverted double
pendulum, we successfully stabilize it. And we provide videos for the results. However, we fail to swing
up the inverted double pendulum based on the model-free learning algorithm. How to solve it?

2.7 Challenging and Enhancement
2.7.1 Learning to Control: A Model-Based Strategy

In the previous portions of this report, we provide reinforcement learning models like DQN, A2C, and
DDPG that are model-free. However, these reinforcement learning models sacrifice applicability to
specific scenarios in order to have broad universality. So what if we learn how to control the inverted
double pendulum by studying the observation state? Initially, when I came to this idea, I’d like to call it
an "Ethy Algorithm." However, after examining the information for a long, this algorithm, called the
Probabilistic Inference for Learning Control (PILCO) algorithm, shows an extremely good performance
in the inverted double pendulum system.[8]

For the double inverted pendulum system, we can write the universal state transmission equation (31):

16

0 200 400 600 800 1000
Episode

0

1000

2000

3000

4000

5000

6000

7000

8000

To
ta
l R

ew
ar
d

Total Reward with Episode

(a)

0 200 400 600 800 1000
Episode

0

2000

4000

6000

8000

10000

12000

14000

To
ta
l R

ew
ar
d

Total Reward with Episode

(b)

0 200 400 600 800 1000
Episode

0

2000

4000

6000

8000

To
ta
l R

ew
ar
d

Total Reward with Episode

(c)

0 200 400 600 800 1000
Episode

0

2000

4000

6000

8000

10000

To
ta
l R

ew
ar
d

Total Reward with Episode

(d)

0 500 1000 1500 2000 2500 3000
Episode

0

1000

2000

3000

4000

5000

6000

7000

To
ta
l R

ew
ar
d

Total Reward with Episode

(e)

0 250 500 750 1000 1250 1500 1750 2000
Episode

10000

10500

11000

11500

12000

12500

13000

To
ta
l R

ew
ar
d

Total Reward with Episode

(f)

0 250 500 750 1000 1250 1500 1750 2000
Episode

12000

12500

13000

13500

14000

To
ta
l R

ew
ar
d

Total Reward with Episode

(g)

Figure 8: Reward for swing-Up and stabilization tasks of the inverted double pendulum. The first
row of four images (a), (b), (c), and (d) demonstrates the results of using the DDPG algorithm for the
swing-up task. The reward functions in these plots ultimately decline to the lowest point, indicating that
the swing-up task was not successfully achieved using the DDPG algorithm. The second row, from left
to right, shows the reward function trends during the training process for stabilizing the second-order
inverted pendulum. Image (e) represents the beginning of the training, image (f) shows the intermediate
stages of training, and image (g) illustrates the reward function trend towards the end of the training.

ẋ = Ax + Bu

y = Cx + Du
(31)

but it is really hard to establish a model for the inverted double pendulum mathematically like (31),
and the simulation environment is not the same as the real word, so we’re going to use a multi-layer
perceptron to fit the relationship between next_state and state, action, which is also a Gaussian
Process.

And we only use the state for calculating the reward, so we directly pass the reward function to the
model, so that it will not need to fit the relationship between state and reward. The design of the
inner model is shown in Fig. 9. To train the multi-layer perceptron, we randomized some states and
actions and used mujoco.mj_step to calculate the new states as the labels. The total sample is 2 × 105

in size, with 0.001 to be the learning rate and 2000 to be the number of the iteration.

And here, we provide our training rewards in Fig. 10. The graph demonstrates a satisfactory performance
of the reward function, as it ultimately converges to approximately -200. Notably, our observations
indicate that, although the inverted double pendulum did not achieve a stable state, it reached its peak
position with relative frequency and at a comparatively low speed. This suggests that the swing-up task
was successfully completed.

Finally, we combined the swing-up task with the stabilization task to evaluate the overall performance.
After seven rounds of simulations, each lasting 25 seconds, we observed that the best result (also the
only result), that the inverted double pendulum successfully swung to a stable position (y > 1.0) and
remained stable for nearly 7 seconds.

17

…

State

Action

MLP

128 64
…

Predict

States

Predict

Reward

Real reward

Figure 9: The design of our PILCO reinforcement learning framework for the inverted double pendulum.
The process begins with the current state and action, which are fed into a Multi-Layer Perceptron (MLP)
consisting of layers with 128 and 64 neurons. The MLP, which has been trained, predicts the next state
of the system, which is then used to compute the predicted reward. The real reward is obtained from
the actual system’s response and is compared with the predicted reward to update the MLP model.
This iterative process refines the model to optimize the control policy for the inverted double pendulum
problem. This model illustrates the relationship among state, action and reward clearly, so we apply
this model to the reinforcement algorithm to better predict future rewards, and decrease the variance of
the RL model.

0 2000 4000 6000 8000 10000
Episode

−2000

−1750

−1500

−1250

−1000

−750

−500

−250

0

To
ta
l R

ew
ar
d

Total Reward with Episode

0 100 200 300 400 500
Episode

−1200

−1000

−800

−600

−400

−200

0

To
ta
l R

ew
ar
d

Total Reward with Episode

Figure 10: Reward for the swing-up task of the inverted double pendulum. Left side shows the rewards
at the beginning of the training. Right side demonstrates the rewards at the end of the training.

18

References
[1] M. Blösch, M. Hutter, M. A. Höpflinger, S. Leutenegger, C. Gehring, C. D. Remy, and R. Y. Siegwart,

“State estimation for legged robots - consistent fusion of leg kinematics and imu,” in Robotics:
Science and Systems, 2012. [Online]. Available: https://api.semanticscholar.org/CorpusID:1367000

[2] M. Bloesch, C. Gehring, P. Fankhauser, M. Hutter, M. A. Hoepflinger, and R. Siegwart, “State
estimation for legged robots on unstable and slippery terrain,” in 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2013, pp. 6058–6064.

[3] J. R. Norris, Markov chains. Cambridge university press, 1998, no. 2.

[4] R. Bellman, “Dynamic programming,” science, vol. 153, no. 3731, pp. 34–37, 1966.

[5] D. T. Hoang, N. V. Huynh, D. N. Nguyen, E. Hossain, and D. Niyato, Markov Decision Process and
Reinforcement Learning, 2023, pp. 25–36.

[6] T. G. Dietterich, “Hierarchical reinforcement learning with the maxq value function decomposition,”
Journal of artificial intelligence research, vol. 13, pp. 227–303, 2000.

[7] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” Advances in neural information processing
systems, vol. 12, 1999.

[8] M. Hesse, J. Timmermann, E. Hüllermeier, and A. Trächtler, “A reinforcement learning strategy for
the swing-up of the double pendulum on a cart,” Procedia Manufacturing, vol. 24, pp. 15–20, 2018.

19

https://api.semanticscholar.org/CorpusID:1367000

Appendix

A Project File Structure
We provide a readme.md in the folder where we described our models and presentation videos. Besides,
you can also access our model on § Optima_Estimation.

20

https://github.com/Ethylene9160/SDM366_Optimal_Estimation/tree/master/assignments/finpro

B Derivation of DH Table

Figure 11: Derive the DH Table Manually (right leg)

The Left DH Table is:

args = (
np.arctan2(0.0095, 0.7976),
np.arctan2(0.15, 0.25981),
np.arctan2(0.15, 0.25981) + np.arctan2(0.15, 0.25566)

)
DH_TABLE_L = [

(0.0, 0.0, 0.0, args[0]),
(np.sqrt(0.25981**2+0.15**2), 0.0, 0.34, -args[0] + theta1),
(0.0, np.pi/2, 0.0, theta2 + args[1]),
(np.sqrt(0.15**2+0.25981**2), np.pi, 0.0, theta3 + args[2]),
(np.sqrt(0.15**2+0.25566**2), 0.0, 0.0, 0.0)

]

The Right DH Table is:

args = (
np.arctan2(0.0095, 0.7976),
np.arctan2(0.15, 0.25981),
np.arctan2(0.15, 0.25981) + np.arctan2(0.15, 0.25566)

)
DH_TABLE_R = [

(0.0, 0.0, 0.0, -args[0]),
(np.sqrt(0.25981**2+0.15**2), 0.0, 0.34, args[0] + theta4),
(0.0, np.pi/2, 0.0, theta5 - args[1]),
(np.sqrt(0.15**2+0.25981**2), np.pi, 0.0, theta6 - args[2]),
(np.sqrt(0.15**2+0.25566**2), 0.0, 0.0, 0.0)

]

21

C Rewards and Restrictions
Here we provide our reward functions for the training.

Table 2: Rewards and restrictions.

Task Formula Notes
Balance Inverted

Pendulum
1 − 0.6x2 − 0.01θ2 − 0.01ẋ2 − 0.01θ̇2 Stop if |θ| < 0.15

Swing-up Inverted
Pendulum (1)

2e(cos(θ)) - θ2 /

Swing-up Inverted
Pendulum (2)

−0.2x2 − 1.8θ2 − 0.002θ̇2 if |x| > 0.95, r = r − 20,
if |θ| < 0.2, r = r + 3.5

Balance Inverted Double
Pendulum

10 − 0.08x2 − 10(y − 2)2 − 0.008θ̇2
1 − 0.04θ̇2

2 Stop if y < 1.02

Swing-up Inverted
Double Pendulum (1)

−1 Stop if y > 1.1

Swing-up Inverted
Double Pendulum (2)

−θ2
1 − (θ1 + θ2)2 /

y: The vertical displacement of the top of the second-order pendulum relative to the pendulum rod.

22

D Initial States for Training
Here we provide some of the initial states our training process.

Table 3: Initial states for our training process.

Task x θ/θ1 θ2 ẋ θ̇/θ̇1 θ̇2

Balance Inverted
Pendulum (1)

U(-0.1,0.1) U(-0.1,0.1) / U(-0.1,0.1) U(-0.1,0.1) /

Balance Inverted
Pendulum (2)

U(-0.4,0.4) U(-0.2,0.2) / U(-0.8,0.8) U(-0.6,0.6) /

Balance Inverted
Pendulum (3)

U(-0.6,0.6) U(-0.3,0.3) / U(-1.8,1.8) U(-1.8,1.8) /

Swing-up Inverted
Pendulum

0 −π 0 0

Balance Inverted
Double Pendulum

U(-0.1,0.1) U(-0.1,0.1) U(-0.1,0.1) U(-0.1,0.1) U(-0.1,0.1) U(-0.1,0.1)

Swing-up Inverted
Double Pendulum

0 −π 0 0 0 0

U(a, b): Uniform distribution from a to b.

23

E Simulation Environment
We provide our environment in the following table:

Table 4: Simulation environments.

ID CPU GPU OS
1 Intel(R) Core(TM) i9-12900H / Windows 11 Home
2 AMD RYZEN 6800H NVIDIA GEFORCE RTX 3050 ti Windows 11 Home
3 Ubuntu 22.04

24

	Biped Robot State Estimation
	State Space Model of a biped robot
	Filter State Definition
	Prediction Model
	Observation Model

	Implement EKF as State Estimator
	Experiment Result and Extras
	Experiment Results
	Extra

	Reinforcement Learning in Inverted Pendulum
	Problem Formulation
	Single Inverted Pendulum
	Double Inverted Pendulum (Bonus)
	Objective and Challenges
	State and Action Spaces Description

	Reinforcement Learning Approach
	Training Methods
	Algorithm Selection and `Throw-Catch' Method

	Strategies
	Swing-Up Task and Stabilizing Task
	Agents Toolkit Preparation and Design
	Starting State
	Episode End
	Unwrapping

	Results and Discussion
	Single Inverted Pendulum
	Double Inverted Pendulum (Bonus)

	Conclusion
	Challenging and Enhancement
	Learning to Control: A Model-Based Strategy

	Project File Structure
	Derivation of DH Table
	Rewards and Restrictions
	Initial States for Training
	Simulation Environment

